All posts tagged: intel

Intel’s Internet-of-Things gateway solutions and gateway development kits offer business IoT users a valuable solution for enabling IoT connectivity with existing industrial equipment or other legacy systems.

These gateway solutions are the result of a collaboration between Intel, McAfee and Wind River, aiming to provide IoT developers with pre-integrated and pre-validated hardware and software building blocks for gateways in IoT networks.

Intel’s gateway ecosystem provides hardware and software components that enable security, manageability and connectivity in your IoT deployment – along with ease-of-use. The technology supports a wide range of operating systems and hardware options to provide developers with choice and flexibility, making it easier for businesses to integrate with new or existing sensors, cloud partners and management solutions.

The incorporation of McAfee Embedded Control security technologies into Intel’s platform integrates the hardware-based security of Intel processors with operating system and application software security, keeping your data secure from the network edge to the cloud.

These gateways can connect legacy systems with the network, enabling seamless and secure data flow between edge devices and cloud computing or other Internet-based IoT services. Employing gateways to connect legacy hardware (without native Internet connectivity) to IoT networks enables businesses to unlock the value of big data and analytics from IoT-connected industrial machines and equipment without having to invest in replacing or upgrading this plant.

Intel’s IoT Platform, including gateways, makes it easier to manage your end-to-end IoT solution, and to enable analytics and secure performance to turn data at the network edge into action and business intelligence, delivering real commercial value.

Enterprise IoT solutions based on Intel’s powerful IoT Gateway Technology provide leading performance and security, enabling near-real-time analysis and tighter, more efficient process controls.

Furthermore, Intel’s hardware partners manufacture many different gateways compatible with the Intel IoT platform – with these designs covering a range of different industry verticals for industrial IoT users.

For example, if you’re working on an automotive application, you may look at one of several choices from Intel’s partners that specialise in IoT gateway hardware for transportation or automotive use.

Intel gateways are available with a range of processors, from single-core up to quad-core options. Generally the more powerful multi-core platforms feature increased RAM and flash storage capacity. The operating system and software ecosystem is also important to consider, since capitalising on the multicore processor requires appropriate programming to deliver the best performance.

The purpose of a gateway is to connect many sensors and devices together with different interfaces and aggregate their data and communications to the IoT network at a single point. This means that the I/O hardware available on the gateway is another important factor when choosing the right gateway for your application, to ensure you can connect with your sensors and devices.

Intel IoT Gateway Technology can efficiently aggregate and filter data at the network edge, allowing businesses to analyse and act upon information closer to its source, and in near real time. To deliver the most transformative business value, gateways need to be intelligent and have sufficient processing power to enable filtering, aggregation and end-to-end analytics on large volumes of data.

Processing and filtering data and performing some analytics on the gateway processor, close to the network edge, also reduces the amount of data that needs to be transmitted, reducing bandwidth costs. All these features help enable business users to realise the greatest possible value from the IoT.

Intel IoT gateways support a range of different interfaces, including Bluetooth, 802.15.4/ZigBee or 6LoWPAN, CAN bus, ModBus and many more. The choice of hardware I/O interfaces is particularly important where the goal is to interface legacy equipment – which may interface over RS-485, ModBus, CAN, industrial Ethernet, ZigBee or other protocols – to the IoT network.

The flexibility of an IoT gateway is particularly valuable in this kind of application, allowing existing machinery and legacy systems to be connected to IoT analytics and cloud computing at a relatively low cost.

amazon2

Intel’s IoT Gateway Platform supports a range of different operating systems, including Windows 10 IoT and Snappy Ubuntu Core, so users who prefer either Windows or open-source Linux ecosystems are accommodated.

Wind River Linux 7 is also supported, including integration with Wind River’s other IoT tools and development tools such as Wind River Workbench, Helix Device Cloud and Helix App Cloud. It’s available preconfigured with Wind River Helix Device Cloud agent, providing cloud connectivity to facilitate device configuration, file transfers, data capture, and a rules engine for analytics.

To support this hardware and software ecosystem for the IoT in an easy-to-use and accessible way, Intel provides in-depth documentation, tools and resources. With built-in tutorials in the Wind River Intelligent Device Platform, you can quickly begin working with tools like Wind River’s Helix App Cloud.

To help with ease of administration and device management, Intel provides MeshCentral, a free and open-source solution for managing all types of devices across a wide variety of operating systems and processor types.

This solution is secure, customisable and easy to install, and it allows users to maintain ownership and control of all their own data. The MeshCentral device management system makes it easier to get legacy devices connected to the cloud, and it is fully interoperable with Intel’s gateway technology and the rest of their IoT ecosystem, making it easy to manage your Intel IoT gateways and other devices.

As an example of Intel’s IoT Gateway Technology at work in a real-world IoT deployment, Intel is working with Cleantech San Diego and other organisations to demonstrate how solutions using Intel’s technology can help optimise water and energy usage in commercial buildings.

At the Port of San Diego, the Intel IoT Gateway-based solution monitors HVAC power, lighting and energy use, resulting in cost savings and reduced greenhouse gas emissions.

As you can imagine, there are many options to consider in the hardware, software and implementation areas of your next Internet of Things project.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisNew Intelligent Gateway Internet of Things Solutions from Intel

The new Edison development platform is the latest in a series of low-cost and product-ready, general purpose computing platforms from Intel that aim to help lower the barriers to entry for all entrepreneurs, from hobbyists and makers to professional engineers and companies working with Internet-of-Things, wearable computing and consumer electronics applications and product development.

The Edison platform includes a robust set of features into its small size, delivering great performance, durability, and a broad spectrum of hardware I/O interfaces and software support. Those versatile features help meet the needs of a wide range of customers and market segments.

Although announced some time ago, the platform is finally in the retail market, which has waited patiently as the Edison packs a large amount of computing power, communications and networking capability into a small, compact package – including an Intel Atom dual-core system-on-chip, integrated Wi-Fi and Bluetooth Low Energy, along with a 70-pin miniature Hirose connector that exposes many GPIO pins and a wide range of different I/O interfaces for connectivity with external hardware.

With these features in mind, Edison is potentially a very useful platform for many of today’s networked, connected embedded computing and Internet-of-Things applications where more computing power is required than can be supplied by a typical low-cost microcontroller along with wireless connectivity.

Edison’s versatile features help this new computing platform to meet the needs of beginners to embedded computing, inventors and makers, as well as experienced users and of course a multitude of commercial applications.

Apart from the integrated hardware, thanks to the 70-pin connector there’s support for more than 30 different industry-standard hardware I/O interfaces – simplifying planning for and integration with peripheral devices and other hardware.

From a software perspective, Edison features out-of-the-box compatibility and support with software and tools such as Yocto Linux, the Arduino IDE, and the Python, Node.js and Wolfram languages. The Edison’s Intel Atom system-on-chip includes a dual-core CPU and an independent single-core microcontroller, integrated memory and storage.

You may be thinking that all this is great, however Edison isn’t suitable for portable applications due to a perceived power issue. Nothing could be further from the truth – although there’s a powerful dual-core processor, WiFi and Bluetooth Low Energy radios on board – it offers low power consumption and a small physical footprint.

Thus the Edison platform is attractive for applications that need a lot of processing power without the size or power consumption constraints of a larger PC or single-board computer. In standby mode with no RF communication, Edison’s power consumption is just 13 milliwatts, increasing to 22 milliwatts with Bluetooth LE active, or 35 milliwatts when Wi-Fi networking is enabled.

The core of Edison is its’ Intel Atom system-on-chip that includes a modern dual-core, dual-threaded 500 MHz CPU along with an independent 32-bit 100 MHz Intel Quark microcontroller, dual-band Wi-Fi, Bluetooth Low Energy, 4 Gb of EMMC non-volatile storage and 1 Gb of DDR3 memory – all in a tiny module the size of a postage stamp – ideal for Internet-of-Things applications.

The unique combination of small size, energy efficiency, computing power and storage, rich capabilities and ecosystem support provided by the Edison module and its surrounding ecosystem of modular hardware blocks inspires creativity and enables rapid innovation from prototype to production for professional, hobbyist or education users.

Created to facilitate rapid innovation, prototyping and product development, Edison can be configured to be interoperable with just about any device, allowing you to quickly prototype simple interactive designs or tackle more complex projects with an embedded computer that offers much more power, on-board storage and networking capability than a simple 8-bit microcontroller.

Intel Edison 2

Furthermore, the Edison platform also supports connectivity to Intel’s new Internet-of-Things Analytics Platform, which enables seamless device-to-device and device-to-cloud communications for your connected devices in Internet-of-Things applications.

However Intel doesn’t just leave you with hardware – their IoT Analytics Platform provides a range of foundational tools for collecting, storing and processing data from your Internet-of-Things networks and devices in the cloud, and for example provides the ability to run user-defined rules on your data stream that trigger alerts based on advanced analytics on the data coming in from your devices.

Overall the Edison offers the product designer an incredible range of hardware possibilities from a reputable brand that knows the business. However implementing your IoT or other product with Edison can be a challenge to get right the first time.

However you can remove the challenge of development by working with experienced partners such as our team here at the LX Group. We have the team, knowledge and experience to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisIntel Edison – closing the gap between the IoT and your products

Intel’s new Edison development platform is the first in a series of low-cost, product-ready, general-purpose embedded computing platforms from Intel that are aimed at lowering the barriers to entry for work in Internet-of-Things and wearable computing applications for the entire community of developers and users, from hobbyists and makers to consumer electronics developers and industrial Internet-of-Things engineers.

The Edison packs a robust set of features into its small size, delivering strong performance built around a leading-edge dual-core Intel Atom system-on-chip combined with a separate single-core microcontroller, along with good hardware durability and a broad spectrum of hardware interfaces and software support.

These versatile features allow the platform to deliver strong value to a wide range of developers and users working with Internet-of-Things, wearable computing, and other embedded computing applications.

Thanks to the integrated Wi-Fi, integrated Bluetooth Low Energy, onboard memory and generous storage, and support for more than 30 different industry-standard hardware I/O interfaces via its 70-pin connector for integration with peripheral devices and other hardware, the Edison is ready for a wide range of applications.

Furthermore with out-of-the-box compatibility and support with software and tools such as Yocto Linux, the Arduino IDE, and the Python, Node.js and Wolfram languages, using the Edison with many open-source community software tools such as these enable ease of adoption and also inspire third-party app developers to build apps for consumers and industrial applications on top of the Intel Edison platform.

This is Intel’s second product targeted partially at the hobbyist, inventor and maker market, following Intel’s Arduino-compatible Galileo platform – however it isn’t limited to that market at all. The Edison development board is a computer only about the size of an SD card, and its unique combination of small size, power, rich capabilities and ecosystem support inspires creativity and enables rapid innovation from prototype to production for professional, hobbyist or education users.

Created for rapid innovation, prototyping and product development, Edison can be configured to be interoperable with just about any device, allowing you to quickly prototype simple interactive designs or tackle more complex projects with an embedded computer that offers much more power, onboard storage and networking capability than a simple 8-bit microcontroller.

During the development process Intel has reported an enthusiastic response to this product from Internet-of-Things entrepreneurs, engineers and the maker community, as well as consumer electronics and industrial machine-to-machine companies.

Intel has decided that in order to best address a broader range of market segments and customer needs, the Intel Edison platform will be extended to a family of different development boards, with notable enhancements over similar existing offerings that include the use of Intel’s leading-edge dual-core Atom system-on-chip, increased I/O capabilities and software support, and a new, simplified industrial design. 

Intel edison development board

These engineering improvements promise greater performance, increased durability and reductions in cost whilst keeping the device very compact. While Intel works to extend the family of its Quark system-on-chips, they have bought the Edison development board to market now in order to meet a broad range of market growth in the embedded and IoT sector.

Edison offers a dual-core, dual-threaded 500 MHz CPU combined with an additional external microcontroller and over 30 different I/O interfaces connected to external systems via a small 70-pin connector, providing a powerful and flexible hardware platform that offers solid performance and good value for wearable or small-form-factor application and hardware development.

System integration is easy as popular networking technologies such as Wi-Fi and Bluetooth Low Energy are supported by the Edison platform with no extra hardware needed, and the board itself is only slightly physically larger than an SD card.

Intel believes the Edison platform will provide more value for embedded computing users with its simplified design process, increased durability and value for money, with this new family of different boards and products offering individuals and small, innovative companies a compelling platform to introduce smart and connected wearable computing designs and Internet-of-Things products that will delight people in new and unexpected ways.

As an example of the Edison platform in action, Intel has demonstrated the Mimo baby monitor from Rest Devices. Based on a tiny Edison-based computer packaged into a toy turtle the size of a baby’s hand, the system receives data from sensors worn on a baby’s clothing, monitoring temperature, breathing, motion and more, and transmits its information to a smartphone via Bluetooth Low Energy, eliminating the need for an external receiver.

Besides sending the baby’s data to an app on the parents’ iOS or Android device, this compact Edison-based wearable computer can trigger actions on connected devices, such as an automatic bottle warmer accompanying the system demonstrated by Intel and Rest Devices which also incorporates a networked Intel Edison board inside.

Thanks to the tiny size and ease of integration into existing and new designs, the Edison platform will accelerate the design and production of almost any connected device.

And with our team here at the LX group, it’s simple to get prototypes of your devices based on the Edison up and running – which also translates to lowering the cost of the system development through to the final product. We can partner with you – finding synergy with your ideas and our experience to create final products that exceed your expectations.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisIntel Edison – embedded IoT made easy

One of the major hurdles of developing portable (and connected) devices is finding the balance between power consumption and battery storage that allows for a genuinely useful device and experience. Generally most components can be optimised through good design and wise choices, however the main microcontroller or CPU can be a sticking point – until now.

Intel have taken this problem to heart and as a solution, recently announced their “Quark” family of system-on-chip cores. They’re a family of low-power 32-bit CPU cores designed to compete with ARM’s Cortex-M series in modern Internet-of-Things and wearable embedded computing applications.

Quark is a very low-power and compact x86-compatible core designed to be even smaller and lower in power consumption than Intel’s low-power Atom CPU cores, which are targeted at tablets, low-power netbooks and smartphones.

Notably, Quark is the first Intel core that is fully synthesizable and designed for potential integration with third-party IP blocks. This means that a customer could use the Quark core, license it from Intel, and hook it to peripherals on a custom system-on-chip, like for example custom graphics, I/O, storage, 802.11 or 3G networking.

Intel Quark

It is claimed that Quark will be one-fifth of the size of the Atom core, and have one-tenth of the power consumption. At this level, Quark is much more powerful – and power hungry – than a lightweight 8-bit microcontroller, but it is also not a competitor to the more powerful ARM Cortex-A family either. It aims to compete with the popular Cortex-M family of 32-bit microcontroller cores from synthesizable microcontroller IP leader ARM.

The Quark core is a single-core, single-thread, low-power, small-footprint CPU core, and it is targeted at “Internet-of-Things” applications, wearable computing devices such as “smart watches”, and low-cost disposable medical devices as well as industrial and building automation control systems.

At this years’s Intel Developers Forum, a prototype “smartwatch” based on Quark technology was displayed as a proof of concept, along with a wearable instrumented patch for medical datalogging. Quark has been demonstrated in a prototype Internet-of-Things enabled HVAC automation application by HVAC leader Daikin. Daikin’s prototype system has WiFi and 3G support, and allows for secure remote control and monitoring.

The Quark product line is designed to slot in below the existing Atom family in terms of cost and power consumption, compatible with the Pentium instruction set architecture but aimed at markets where small form factor and low power consumption take priority, with a power consumption target that is apparently less than 100 milliwatts in some cases.

This power efficiency makes Quark attractive in wearable computing applications such as “smart watches” and Google Glass style wearable displays where battery capacity is very limited due to size constraints. Some bracelet-like wearable devices have been shown at this year’s Intel Developers Forum as a proof-of-concept of a wearable system powered by Quark technology.

Being smaller, lower power, and less powerful than Atom, Intel will be targeting the Quark product line at the Internet-of-Things market in applications where more power than a traditional embedded microcontroller is desirable or required, but less power consumption than an ordinary PC or notebook is desirable.

Quark is synthesizable, which means that customers can add their own IP around the core. ARM, for example, lets companies license its CPU cores and then add their own co-processors or other components to create chips optimised for a wide variety of projects and industries. How this would work in the case of Quark is not exactly clear however, since Intel plans to keep manufacturing of Quark silicon entirely in-house, at least initially.

This is a new move for Intel, but the company intends to retain control over their entire chip fabrication process in-house, bringing in existing customer IP for integration with Quark and in-house fab, although it is possible at least in principle that other foundries could fabricate Quark-based systems for licensees of the IP.

Intel Quark

Intel’s decision with Quark means leveraging its own IP in a way that lets it offer customisable hardware to potential customers, without giving up control of either its processor IP or its own fab capabilities. Designers will not be allowed to customise the Quark core, they can only connect third-party IP blocks to its fabric.

Quark’s partially-open fabric appears to be somewhat derivative of ARM’s long-standing and successful policy of licensing its Cortex IP to other chip makers in a synthesizable form. ARM Cortex M3 and M4 cores have been rapidly stealing market share away from other microcontroller platforms in recent years – since the 32-bit architecture offers significant performance gains over 8-bit platforms such as PIC or AVR.

Furthermore their Cortex-M3 is finding its way into smartwatches such as the Sony SmartWatch 2 and the Qualcomm Toq as well as wireless sensor network system-on-chips such as TI’s CC2538 802.15.4/ZigBee/6LoWPAN platform. However as the Quark matures we’re sure it will be a successful player in the portable device and IoT arena.

Technologies such as Intel’s Quark are an example of how technology is constantly improving, and with the right knowledge it can be used to your advantage. However there are also many existing power-saving chipsets on the market your team may not be aware of, or unsure about taking on a new development platform.

But don’t let that get in the way of improving your existing or new designs – if you’re not sure about your options, discuss them with a team that understands the latest technologies, platforms and how to integrate them for your advantage – the team at the LX Group.

Getting started is simple – for a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisIntel announces the new Quark family of SoC Cores