All posts tagged: iot

The new Arduino Create platform aims to make embedded computing and Internet-of-Things development even easier, and an effort to make the popular Arduino development environment more relevant and up-to-date for today’s networked, connected Internet-of-Things applications – and to be easier to use for collaborative development and sharing of projects and open-source resources.

This new platform is intended to replace the widely used and proven Arduino IDE that many people will be familiar with. This system has been around for a decade, with minor revisions along the way – however is basically the same original system, derived from the Wiring platform.

Over time the Arduino IDE has inherited many things, some good and some bad, from this underlying legacy of the Wiring platform – and the Arduino Create platform aims to replace this with a modern, flexible toolchain. One of the most significant changes is that this new development environment will be a Web-based platform, with all the advantages as well as challenges that go along with that.

More than 10 years ago, the Arduino project set out to develop easy-to-use tools to make physical computing accessible and simple, with a focus on open-source software and hardware. Today, the Arduino Create platform aims to continue to remain true to these values in order to bring the same outcomes to the world of Internet-of-Things development, bringing this technology into the hands of teachers, students and creative artists, making the technology accessible for everybody, and serving as “one stop shop for Makers”.

But this new browser-based internet-connected platform is not just a new development environment. It enables everybody, including students, hobbyists, makers and other non-expert users to not just write code easily but also to share their work.

Users can easily configure their hardware, install updates and patches that are easily managed in the cloud, such as support for different board hardware types, and extra software libraries, and connect their networked devices to the cloud, using Web-accessible dashboards and other Internet-based features.

This cloud-based approach includes some clever features, such as the ability to easily “hide” sensitive private API keys and passwords within your code when you share it, and automatically insert this kind of secure information into your code at the preprocessor stage, before the code is uploaded to your board.

Alongside these new development capabilities, the new platform’s focus on community, culture leadership and education around the emerging Internet-of-Things domain is clear. The Arduino “IoT Manifesto” sets out not only how Arduino will approach the Internet of Things, but also how they intend to develop tools for it as well as how they think other parties should approach the way they’re developing their own tools and services for the IoT.

Arduino Create makes it very easy to get started, featuring guided workflows to help easily configure Internet services and to help users through the process of installing the cross-browser plugin. Once the plugin is installed, you can get started writing code and uploading sketches to an Arduino board connected to your computer directly from your web browser, in a way that will be largely familiar on the surface to everybody who has ever used an Arduino.

On the surface the Arduino Web Editor looks a lot like the familiar IDE, only browser-based. All the standard libraries included with Arduino IDE installations are immediately available, along with support for all the standard Arduino hardware targets.

This makes usability easy for new users, with minimal transition required for users who are already familiar with the Arduino IDE. All the significant back-end changes are hidden underneath, with a largely familiar user experience.

The Create platform also includes the Arduino Cloud infrastructure, which allows you to connect your Arduino boards directly to the Internet with ease, using transport protocols such as MQTT to communicate from Arduino devices to Web services and to other devices.

The Arduino Cloud infrastructure as well as the Arduino Web Editor are powered by Amazon Web Services behind the scenes, with AWS IoT and AWS Lambda providing the Arduino Create platform with secure, reliable and highly scalable infrastructure, enabling the platform that enables makers to easily connect and manage their Arduino projects through the internet and the cloud.

Eventually the Arduino Cloud infrastructure will provide Arduino users with a one-stop-shop for Arduino-connected Web services, including real-time data display dashboards, streaming of data and database storage.

CreateThe community surrounding the Arduino platform is one of its defining characteristics, and the Arduino Project Hub integrated into the Arduino Create system aims to continue this community-oriented tradition.

The huge amount of open-source code, examples and community support available around the Arduino platform mean that if you have a problem you can probably find somebody else that has had the same problem earlier that can easily help you solve it.

This ecosystem of community support is a key part of the Arduino success story – this has helped make Arduino the default platform for beginners and hobbyists looking to get started with microcontrollers and embedded computing.

The Arduino Create ecosystem builds upon this tradition with the integration of the Arduino Project Hub. The Arduino Project Hub is intended to be the new focus for the extensive community of Arduino users to share their projects, ideas and examples.

Although this may be an exciting development for the hobbyist community, it is not an ideal situation for those looking to design, build and manage their own commercial Internet-of-Things products. This is quite apparent with first use, thanks to the ominous “You may lose your data” warning.

Furthermore, there are many options on the hardware, software and platform fronts that require serious consideration – with security being paramount. Thus you need to discuss your IoT project with professionals from the LX Group.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisArduino Create Platform – increasing access to the Internet of Things

Marvell’s Wi-Fi Microcontroller Platform is a highly cost-effective, flexible and easy-to-use hardware and software platform built around a combination of Marvell’s high-performance 88MC200 ARM Cortex-M3 microcontroller and Marvell’s Avastar series of low-power 802.11n Wi-Fi system-on-chip radio devices.

With these new Wi-Fi Microcontroller Platform products, Marvell aims to make it easy for Internet-of-Things developers and product designers to build a new generation of connected devices that can interact seamlessly with mobile clients and cloud applications, delivering a broad range of IoT experiences and services to consumers in areas such as smart energy management, home automation and consumer electronics.

On the software side, this platform is powered by Marvell’s proven, field-tested EZ-Connect Software Development Kit, which simplifies software development and enables OEMs to focus on delivering IoT applications and services to their customers in a way that focuses on their own application-specific added value, without devoting lots of time and money to the low-level Wi-Fi software and firmware development.

Marvell has recently announced that they are the industry’s first silicon vendor to develop a fully supported SDK for Apple’s HomeKit framework – a framework in Apple iOS 8 for communicating with and controlling networked home automation devices and IoT appliances in the home.

This SDK, which is based around Marvell’s Wi-Fi Microcontroller Platform, the 88MC200 microcontroller, the 88W8801 Wi-Fi system-on-chip, and the EZ-Connect software platform, has received Apple’s stamp of approval as a HomeKit SDK and this is the first combined chipset and SDK platform on the market to offer full HomeKit support to hardware and device manufacturers looking to integrate their products into the HomeKit ecosystem.

Marvell’s HomeKit-ready silicon platform and SDK are already being used by several device manufacturers, paving the way for the first third-party HomeKit appliances to be bought to market.

This SDK is built on top of Marvell’s EZ-Connect SDK, simplifying the development of HomeKit-compatible products. Appliance manufacturers using Marvell’s SDK for HomeKit benefit from the complete, supported reference implementation of the HomeKit framework that this SDK provides, and they’re able to save months of development effort – instead focusing their efforts on innovative product features and great user-facing experiences.

Marvell’s Wi-Fi platform already powers many consumer IoT products on the market, and has been adopted by many industry leaders developing IoT products in sectors such as home appliances, lighting, home automation, toys, wearable computing and more. Mattel’s interactive Internet-connected Hello Barbie doll is one such example of an innovative IoT product already on the market which is powered by Marvell’s Wi-Fi platform and EZ-Connect technology.

The system is powered by Marvell’s 88MC200 microcontroller – the host microcontroller component of the Wi-Fi Microcontroller Platform. This is based on a 32-bit ARM Cortex-M3 core, with a CPU clock up to 200 MHz, 512 kB of SRAM memory, 8 MB of on-chip serial flash memory, and a rich set of I/O interfaces that offer high performance, low power consumption, and flexible connectivity to a range of peripheral devices.

amazon2

All of Marvell’s 802.11n Wi-Fi radio system-on-chip devices are based around an additional, separate power-efficient ARM core, and the firmware in this chip takes care of most of the handling of the Wi-Fi protocol, relieving the 88MC200 host microcontroller’s resources so that this processor can be used for application software and higher-layer networking.

This family of Avastar Wi-Fi radio chipsets have a market-leading architecture and RF performance, delivering reliable Wi-Fi network connectivity with low power consumption.

Four different wireless system-on-chip devices in this family are supported by the Marvell Wi-Fi Microcontroller Platform, including the 88W8801 single-band 2.4GHz device, the 88W8782 device which supports dual-band Wi-Fi networking, the 88W8787 which supports Bluetooth 3.0 connectivity as well as dual-band Wi-Fi, and the 88W8777 device which combines both Wi-Fi and Bluetooth 4.0 wireless connectivity into a single chip.

The Avastar 88W8777 system-on-chip is a particularly powerful and useful device well suited to IoT applications such as gateway devices, with support for both Bluetooth 4.0 and Wi-Fi connectivity in a single device.

As well as 802.11b/g/n Wi-Fi, this chipset incorporates the Bluetooth 4.0 standard and provides Bluetooth Smart-ready operation for classic Bluetooth devices and profiles as well as Bluetooth Low Energy devices. The Wi-Fi and Bluetooth radios can share a single antenna for the lowest cost implementation, or the two radios can operate on separate antennas for maximum performance and throughput.

This new system from Marvell offers a pathway into the Apple HomeKit environment, along with a base for Internet of Things product applications. However there are many options – and choosing the right plaform from a myriad of options can be a challenge. Instead, turn to the LX Group to solve your problems.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisHome automation with Apple HomeKit and Marvell’s Wi-Fi Microcontroller Platform

The emerging Narrowband IoT (NB-IoT) standard is a wireless technology designed especially for enabling cellular connectivity to Internet-of-Things devices, and is designed to combine long-range mobile connectivity with compatibility with existing LTE mobile network infrastructure and low power consumption for sensors or other long-lived devices.

As the NB-IoT standard is specifically aimed at enabling cellular low-power, wide-area (LPWA) wireless networks, targeted at machine-to-machine and IoT applications such as environmental and agricultural monitoring and the metering and automated reading of utilities such as water and power meters.

Furthermore, NB-IoT aims to provide reliable, wide-area network coverage, low power consumption, and strong scalability with support for very large numbers of devices on the network. This interesting new standard has been under active development during the last two years by several major players in the telecoms and networks industry – including Qualcomm, Huawei and Vodafone.

Vodafone believes the emerging NB-IoT standard will be the “killer” technology in the LPWA wireless IoT race, beating alternative technologies such as SigFox and LoRa. Vodafone is one of the key players in the NB-IoT forum, an industry association established last year to advance the development of narrowband IoT technology.

NB-IoT is one of several wireless technologies that aim to overcome the power and therefore transmission range limitations of alternative wireless networking technologies for LPWA Internet-of-Things applications. NB-IoT is a licensed-spectrum technology, unlike alternatives such as SigFox and LoRa which rely on unlicensed, or class-licensed, RF spectrum.

Although the use of unlicensed spectrum means that other LPWA technologies do not require a specific spectrum allocation and therefore are cheaper and easier for service providers to deploy, the limited bandwidth, relatively high congestion and limited transmission power in these radio bands limits the range and performance of the network.

With more and more wireless electronic devices in use everywhere, congestion in the unlicensed ISM radio bands is only going to get even worse in the future, NB-IoT hopes to overcome these limitations, in part by using licensed spectrum allocations like the rest of the mobile network.

The next generation of wide-area wireless IoT is a competitive field, with LoRa representing a more “open” system using unlicensed (but relatively congested) radio spectrum, and so far this has attracted support from many telecommunications service providers and operators including French operators Orange and Bouygues Telecom.

SigFox is also continually growing, with claims that they are presently deploying or operating networks in 17 countries. NB-IoT is still lagging slightly behind in this regard, with no widespread commercial deployment yet.

Vodafone has chosen to throw its weight behind NB-IoT instead of the competing technologies, however. Vodafone, in partnership with Chinese equipment supplier Huawei Technologies, which is another major NB-IoT backer, has recently opened a dedicated lab for NB-IoT development at its Newbury, UK headquarters.

NB-IoT Forum members, and other developers and organisations looking to use the NB-IoT standard to support commercial services, will now be able to test their applications at Vodafone’s new facility.

And with the backing of Vodafone, Huawei and other major industry players – NB-IoT is now in the process of being adopted as an official standard within the 3G Partnership Project (3GPP), with the expectation that it will be finalised and included in LTE release 13 later this year.

There have been some delays in this process, however, and there have been suggestions that NB-IoT will not be finalised in time for Release 13, instead slipping to Release 14 at some point in the future.

This has the potential to be a significant setback for the nascent technology, slowing down its widespread acceptance industry-wide, as well as allowing extra time for competing LPWA technologies such as LoRa and SigFox to continue to grow, with more deployments, bigger networks, and greater provider and end-user familiarity with these technologies.

One of the factors behind Vodafone’s support for NB-IoT is its strong cost-effectiveness for providers who have already built and operated modern mobile networks. Vodafone claims that 80 to 90 percent of their currently deployed base stations use Huawei’s SingleRAN technology for their Radio Access Network (RAN).

SingleRAN technology uses software-defined radio to allow a single network to support multiple different mobile telecommunications standards without hardware replacements, making it cheaper and easier to keep up with new developments in mobile communications standards.ericsson1

The easy integration of NB-IoT into the existing LTE mobile ecosystem, and its compatibility with LTE network infrastructure without new hardware deployments, are features that make it particularly attractive to established providers in the mobile communications sector.

For mobile network operators that maintain older base stations that have not yet been upgraded to LTE, however, moving to networks that can support NB-IoT may be a more expensive and slow process.

Nevertheless, NB-IoT is coming and this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisNarrowband IoT – enabling M2M connectivity with existing LTE networks

Intel’s Internet-of-Things gateway solutions and gateway development kits offer business IoT users a valuable solution for enabling IoT connectivity with existing industrial equipment or other legacy systems.

These gateway solutions are the result of a collaboration between Intel, McAfee and Wind River, aiming to provide IoT developers with pre-integrated and pre-validated hardware and software building blocks for gateways in IoT networks.

Intel’s gateway ecosystem provides hardware and software components that enable security, manageability and connectivity in your IoT deployment – along with ease-of-use. The technology supports a wide range of operating systems and hardware options to provide developers with choice and flexibility, making it easier for businesses to integrate with new or existing sensors, cloud partners and management solutions.

The incorporation of McAfee Embedded Control security technologies into Intel’s platform integrates the hardware-based security of Intel processors with operating system and application software security, keeping your data secure from the network edge to the cloud.

These gateways can connect legacy systems with the network, enabling seamless and secure data flow between edge devices and cloud computing or other Internet-based IoT services. Employing gateways to connect legacy hardware (without native Internet connectivity) to IoT networks enables businesses to unlock the value of big data and analytics from IoT-connected industrial machines and equipment without having to invest in replacing or upgrading this plant.

Intel’s IoT Platform, including gateways, makes it easier to manage your end-to-end IoT solution, and to enable analytics and secure performance to turn data at the network edge into action and business intelligence, delivering real commercial value.

Enterprise IoT solutions based on Intel’s powerful IoT Gateway Technology provide leading performance and security, enabling near-real-time analysis and tighter, more efficient process controls.

Furthermore, Intel’s hardware partners manufacture many different gateways compatible with the Intel IoT platform – with these designs covering a range of different industry verticals for industrial IoT users.

For example, if you’re working on an automotive application, you may look at one of several choices from Intel’s partners that specialise in IoT gateway hardware for transportation or automotive use.

Intel gateways are available with a range of processors, from single-core up to quad-core options. Generally the more powerful multi-core platforms feature increased RAM and flash storage capacity. The operating system and software ecosystem is also important to consider, since capitalising on the multicore processor requires appropriate programming to deliver the best performance.

The purpose of a gateway is to connect many sensors and devices together with different interfaces and aggregate their data and communications to the IoT network at a single point. This means that the I/O hardware available on the gateway is another important factor when choosing the right gateway for your application, to ensure you can connect with your sensors and devices.

Intel IoT Gateway Technology can efficiently aggregate and filter data at the network edge, allowing businesses to analyse and act upon information closer to its source, and in near real time. To deliver the most transformative business value, gateways need to be intelligent and have sufficient processing power to enable filtering, aggregation and end-to-end analytics on large volumes of data.

Processing and filtering data and performing some analytics on the gateway processor, close to the network edge, also reduces the amount of data that needs to be transmitted, reducing bandwidth costs. All these features help enable business users to realise the greatest possible value from the IoT.

Intel IoT gateways support a range of different interfaces, including Bluetooth, 802.15.4/ZigBee or 6LoWPAN, CAN bus, ModBus and many more. The choice of hardware I/O interfaces is particularly important where the goal is to interface legacy equipment – which may interface over RS-485, ModBus, CAN, industrial Ethernet, ZigBee or other protocols – to the IoT network.

The flexibility of an IoT gateway is particularly valuable in this kind of application, allowing existing machinery and legacy systems to be connected to IoT analytics and cloud computing at a relatively low cost.

amazon2

Intel’s IoT Gateway Platform supports a range of different operating systems, including Windows 10 IoT and Snappy Ubuntu Core, so users who prefer either Windows or open-source Linux ecosystems are accommodated.

Wind River Linux 7 is also supported, including integration with Wind River’s other IoT tools and development tools such as Wind River Workbench, Helix Device Cloud and Helix App Cloud. It’s available preconfigured with Wind River Helix Device Cloud agent, providing cloud connectivity to facilitate device configuration, file transfers, data capture, and a rules engine for analytics.

To support this hardware and software ecosystem for the IoT in an easy-to-use and accessible way, Intel provides in-depth documentation, tools and resources. With built-in tutorials in the Wind River Intelligent Device Platform, you can quickly begin working with tools like Wind River’s Helix App Cloud.

To help with ease of administration and device management, Intel provides MeshCentral, a free and open-source solution for managing all types of devices across a wide variety of operating systems and processor types.

This solution is secure, customisable and easy to install, and it allows users to maintain ownership and control of all their own data. The MeshCentral device management system makes it easier to get legacy devices connected to the cloud, and it is fully interoperable with Intel’s gateway technology and the rest of their IoT ecosystem, making it easy to manage your Intel IoT gateways and other devices.

As an example of Intel’s IoT Gateway Technology at work in a real-world IoT deployment, Intel is working with Cleantech San Diego and other organisations to demonstrate how solutions using Intel’s technology can help optimise water and energy usage in commercial buildings.

At the Port of San Diego, the Intel IoT Gateway-based solution monitors HVAC power, lighting and energy use, resulting in cost savings and reduced greenhouse gas emissions.

As you can imagine, there are many options to consider in the hardware, software and implementation areas of your next Internet of Things project.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisNew Intelligent Gateway Internet of Things Solutions from Intel

Here at the LX Group we investigate many Internet of Things platforms for research and fit-for-purpose testing, and one of these is the new hardware and software ecosystem has been announced by the Arduino team in Italy.

They have recently released and announced a number of new products and services specifically aimed at enabling cloud-connected wireless solutions and other Internet-of-Things applications, including the MKR1000 develpoment board, their IoT Development Environment, and a companion Community Project Platform.

Their new MKR1000 is a tiny, feature-packed board based on Atmel’s ATSAMW25 module, which incorporates a IEEE 802.11 radio certified by the Wi-Fi Alliance along with a low-power ARM Cortex-M0+ 32-bit microcontroller.

With a much smaller form-factor than traditional Arduino boards, along with 32-bit ARM performance and built-in wireless networking, the MKR1000 offers a LiPo battery charging circuit and on-board cryptographic support, making it an Internet-connected platform that is compact, powerful, secure and battery-ready – ideally suited for the burgeoning Internet-of-Things market.

To promote the new board, Arduino will team up with Microsoft to give away 1000 units to makers who submit project ideas based on the platform. The new board “offers the ideal solution for Makers seeking to add Wi-Fi connectivity with minimal previous experience in networking”, according to the team.

Arduino has also recently announced their new project and tutorial platform, the Arduino Project Hub, as the place to go for Arduino users to host and share their projects and experiences.

As with the the recent “World’s Largest Arduino Maker Challenge” competition alongside Microsoft, the Arduino Project Hub has been developed by Arduino in partnership with hackster.io, and this official partnership between Arduino and another commercial entity – telling the community that this is “the place” where your Arduino projects are supposed to be hosted and shown off – is an interesting move for the Arduino company and the Arduino community.

It is not just the new networking-oriented Arduino MKR1000 hardware platform that has made Arduino’s push towards the Internet of Things obvious in their recent announcements. Among the new Web properties that Arduino has announced is Arduino IoT, hosting a collection of Arduino-oriented tutorials and guidance for people who want to get started with Internet-of-Things development.

With this, Arduino aims to create a new platform to “make building IoT devices as easy as blinking a LED”, providing a range of inspirational examples and tutorials based on the Arduino and Genuino MKR1000 platform, ranging from a simple Telegram Bot to a more complex smart thermostat.

Another key part of Arduino’s push towards IoT and connected applications is the new Arduino Cloud environment. Arduino Cloud is designed around the new MKR1000 board, although it also supports the more modern of the official Arduino Wi-Fi Shields (which like the MKR1000 has on-board cryptographic support).

Arduino Cloud allows you to connect your Arduino directly to Web services and other Internet- or cloud-based applications using MQTT as the messaging protocol. It can also connect messages across the Internet from one Arduino device to another.

At the moment the Arduino Cloud environment is in an early alpha release, and it is claimed to currently have “one percent of the features” that will be implemented in the final product. Although it is still in development today, it will be interesting to see how having cloud capabilities natively included in the official Arduino ecosystem will potentially affect similar, competing environments such as Particle Cloud.

We’re already seeing a consolidation of board support around the Arduino development environment, with many different kinds of hardware platforms from different manufacturers all being unified by common compatibility with the Arduino IDE, especially with the more advanced Board Manager functionality that is included in the current revision of the Arduino IDE.

Now the Arduino Cloud platform could potentially bring this same unification to the cloud and Internet applications side of the IoT, with a common cloud platform that is compatible with all those different hardware products.

mkr2

The Arduino Create platform is another exciting new addition to the Arduino ecosystem that has recently been announced – a Web-based development environment for Arduino projects. This new environment is still in private beta, with the development team refining the Web-based code editor based on feedback from the beta cohort, but we’re told that it is almost ready.

This platform promises to replace the familiar Arduino IDE – which inherits many legacy elements, both good and bad, from Wiring on which is is based – with a modern, flexible, Web-based toolchain. Using a browser plugin, the new environment will allow you to write code and upload sketches to any Arduino device connected to your computer, directly from the Web browser.

It will also store your sketches and allow you to connect to services in the cloud. Other attempts at cloud-based development environments have been unpopular in some cases, since users are sceptical of having their files and work potentially disappear with a defunct company or become suddenly locked up behind a paid subscription model in the future, without users having local possession of their own files.

However, given Arduino’s long-standing commitment to open-source free software for their development tools, these factors are unlikely to be a concern. Nevertheless, this is not a total recommendation – as each client has different needs that may require open or closed hardware and software solutions.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisArduino team releases new Internet of Things Platform

With the growing interest in low-power wide-area wireless networks for Internet-of-Things and M2M applications, Microchip Technology has been rolling out a number of wireless solutions based on radio technologies such as LoRa – addressing requirements such as long-range connectivity, strong energy efficiency for long battery life, and low hardware cost to enable high-volume deployments.

LoRa is a wireless technology developed by Semtech Corporation, which utilises spread-spectrum modulation in sub-gigahertz UHF bands to enable wireless network connectivity over very long distances, with ranges on the order of 10 kilometres. This allows for extremely strong energy efficiency enabling wireless end-nodes that can operate on battery power for up to 10 years. LoRa networks also offer very high network capacity, with up to a million network nodes, high robustness, and localisation capability.

LoRa radio technology is ideally suited for battery-operated sensors, smart-city technologies, home and building automation, smart agriculture, wireless sensor networks, industrial automation technologies, and other similar M2M and Internet-of-Things applications where efficient battery use is important and network nodes may be separated over wide areas.

Microchip’s LoRa technology solutions are long-range, low-power solutions for network end nodes in IoT or M2M applications, and they’re ready to run out-of-the-box, with easy setup and configuration.

With the complete LoRaWAN protocol and RF regulatory certifications such as FCC certification provided for their modules, Microchip’s LoRa modules and solutions reduce time-to-market and reduce development costs for your connected, wireless products.

The LoRaWAN protocol is a low-power, wide-area networking (LPWAN) specification which complements LoRa technology, particularly aimed at wireless, battery-operated devices in regional, national or global networks.

LoRaWAN aims to address key requirements of M2M and Internet-of-Things applications, such as bidirectional communication, mobility, strong security, and localisation services.

The LoRaWAN protocol implements several layers of security features to ensure a high level of encryption and security is maintained across the entire embedded network. For example, a unique network session key ensures security at the network server level and a separate application session key, which is unique and also specific to a given end-node device, provides an extra layer of security at the application server level.

LoRaWAN aims to provide seamless interoperability between smart, LoRa-networked IoT “things” of different types, from different manufacturers, without the need for complex local installations.

Along with its advantages in long-range connectivity and power efficiency, this is just one of the ways that LoRa and LoRaWAN technology is aimed at further enabling the Internet of Things.

Microchip’s LoRa modules and transceiver solutions aim to provide a flexible, cost-effective platform for the creation of powerful wireless IoT solutions and products to meet customers’ needs.

Although these LoRa solutions from Microchip can be used alongside microcontrollers and components from other vendors, these devices and their supporting software examples and documentation are designed to be particularly complementary to Microchip’s popular PIC microcontrollers.

Microchip helps make it easy to build LoRa networks by providing almost-complete end-device modules that are certified for FCC and similar RF regulatory agencies. These LoRaWAN-equipped modules make it easy to connect to any LoRa Alliance certified gateway, from Actility, Cisco or Kirlink for example, and to connect to LoRa network services such as those provided by Actility or IBM.

The Microchip RN2483 LoRa module is a compact surface-mounted module which provides a built-in microcontroller, 14 GPIO pins, onboard ADC, a serial EEPROM for 64-bit MAC addressing, and the analog front end and RF matching transceiver for the transceiver.

These features integrated into the hardware module mean that an additional microcontroller may not be needed in many applications, and that no special RF design or layout expertise is needed to get you started building and deploying LoRa networks and products.

lx2

The LoRa radio in the RN2483 operates in the sub-gigahertz spectrum at either 433 MHz or 868MHz, making it compatible with different spectrum requirements across all international markets. These LoRa transceivers feature a very strong receive sensitivity of -148dBm, enabling connectivity over extremely long distances, and forward error correction is also implemented, helping to improve immunity to interference.

A unique spread-spectrum modulation scheme is used, helping to enable maximum range and maximum network capacity with minimum power consumption.

The RN2483 implements the LoRaWAN Class A protocol, enabling seamless connectivity to any LoRaWAN-compliant network infrastructure, whether public or privately deployed. It is the first LoRa module on the market to pass certification testing from the LoRa Alliance.

This module is specifically designed to make it easy to get started, accelerating your development and time to market. It is certified to the LoRaWAN 1.0 specification, ensuring that designers can quickly and easily integrate their edge-node devices into any LoRaWAN 1.0 compliant LoRaWAN network.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLoRa wireless nodes made easy with new solutions from Microchip

Creating Internet-of-Things nodes and related hardware can be a challenge, however with new hardware such as Atmel’s latest SmartConnect SAMW25 Wi-Fi module – you get a low-power, pre-certified system-on-chip solution that is aimed at the needs of embedded computing, connected appliances and Internet-of-Things applications.

This highly integrated module offers an ideal solution for designers looking to easily integrate wireless connectivity into their products using a Wi-Fi platform with FCC precertification for the module.

The SAMW25 module is based on Atmel’s industry-leading WINC1500 Wi-Fi chipset combined with a 32-bit Atmel SMART SAM D21 microcontroller on the application processor side. This provides an all-in-one- solution that opens the door to wireless LAN connectivity for a wide range of battery-powered Internet-of-Things devices and applications that require an application processor with integrated Wi-Fi connectivity, without compromising on cost or power consumption.

With a compact 34 x 15mm footprint, the module is competitive with other Wi-Fi modules on the market in terms of size, RF performance and cost – but according to Atmel this platform is particularly strong in terms of its power consumption and power-saving modes compared to similar Wi-Fi modules on the market.

The WINC1500 Wi-Fi device includes everything you need at the physical layer for 2.4GHz IEEE 802.11 b/g/n support at up to 72 Mbps throughput, such as an integrated power amplifier, transmit-receive switch, and advanced signal processing that provides superior sensitivity and range.

The rest of the Wi-Fi stack includes TCP/IP on board, WEP and WPA/WPA2 encryption support, and support for Wi-Fi Direct, Soft-AP and station modes. The WINC1500 MAC layer is designed to minimise power consumption while also providing high data throughput.

The WINC1500 includes its own, independent 32-bit processor dedicated to the Wi-Fi networking functions. This processor provides many of the MAC functions, for example association, authentication, radio power management, security key management and frame aggregation or de-aggregation. This processor also provides flexibility for various modes of Wi-Fi operation, such as access point and station modes.

On the host microcontroller side, The SAM D21 microcontroller core runs at up to 48MHz, with 256kb embedded Flash and 32kB SRAM. This system-on-chip features convenient over-the-air Wi-Fi firmware upgrade capability, and SPI, UART and I2C interfaces.

The microcontroller is based on the ARM Cortex-M0+, building on ARM’s decades of innovation and experience in powerful yet energy-efficient microcontroller architecture.

This general-purpose microcontroller is ideal for many low-power, cost-sensitive industrial and consumer applications, running the application in one place integrated into the module alongside the Wi-Fi radio. In most cases, this system can run an Internet-connected application completely self-contained with no other microcontroller needed in the system.

A TCP/IP stack is provided onboard to handle the networking, along with DHCP and DNS network protocols and TLS (Transport-Layer Security), SSL and HTTPS support, enabling strong security in IoT networking applications. Atmel’s Wireless Simple Configuration (WSC) is also supported, making it easy to provision new devices on the network with their passwords and the like.

The microcontroller also provides a DMA and event-handling system and a full-speed USB peripheral device plus USB host. Six flexible serial communications modules are provided, along with a 12-bit ADC, 10-bit DAC and a hardware touch-sensing engine.

This rich and flexible set of peripherals, combined with the energy-efficient application processor and integrated Wi-Fi radio, make this platform an ideal all-in-one solution for a range of home automation, consumer, utility metering, industrial sensing and Internet-of-Things applications.

All these features are accessible via the Atmel Studio 6 development environment, making it easy to use the SAMW25 module and easy to get started developing software for your Wi-Fi connected products and IoT applications. You don’t need to have any previous experience working with the TCP/IP stack, 802.11 networks or RF hardware design.

download

Atmel also offers the Atmel SAMW25 Xplained Pro evaluation kit, their wireless hardware platform to help you evaluate and develop for the ATSAMW25 Wi-Fi system-on-chip module. This kit is supported by the Atmel Studio IDE, and it provides easy access to all the features of this device, explaining how to integrate this module into your custom design.

Additional peripherals are offered in the kit, extending the features of the module and making it easier to develop your custom designs – for example a USB serial port and Serial Wire Debug support for programming and run-time debugging of your software in the onboard SAM D21 microcontroller. No other programmers or external tools are required to program or debug the device, making it easy to get up and running quickly.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisRapid Internet of Things Node development with Atmel SmartConnect SAMW25

Although many interested readers may have a focus on the hardware side of the Internet of Things, there is much that can be done with the data and software side as well. One interesting new and open-source solution is the Quarks framework from IBM.

Quarks is a framework for implementing and deploying edge analytics on a variety of different data streams and devices. Quarks allows you to push data analysis and machine learning out to “edge” devices in Internet-of-Things applications – for example, routers, gateways, sensors, appliances and machines at the edge of the network, rather than centralised servers.

This new system runs locally on gateways and edge devices, analysing their streams of data. This means these devices can perform analytics or make decisions based on the data they receive locally, resulting in faster responsiveness and reduced communications costs.

Quarks enables continuous streaming analytics on gateways and edge devices which can work together with centralised server-side systems to provide efficient and timely analytics across the whole network and the IoT ecosystem, from the centre out to the edge.

Performing some analysis of data at the network edge where this data is generated means that the amount of data that needs to be transmitted back to a central server is reduced, and the amount of data that needs to be stored is reduced. Quarks was developed to provide an SDK and an embeddable runtime for these kinds of streamable analytics applications on lightweight devices. It provides APIs and a lightweight runtime to allow you to build analytics for streaming data at the network-edge devices in IoT applications.

This means that Quarks enables you to process data locally – in a lightweight device such as an embedded computer in a car engine, an Android phone, or a lightweight platform such as a Raspberry Pi, for example, before data is transmitted over the network. Quarks provides modularity and a micro-kernel runtime which is resource-efficient to allow deployments on these kinds of devices with constraints in hardware resources such as memory, including only the components in the build that are needed for that specific device or application.

Quarks addresses requirements for analytics at the edge in IoT use-cases that are not addressed well by central server-based analytics solutions. Using centralised analytical tools to make interpretations and decisions from IoT data traditionally means that the data must be transmitted over a network – and this can be problematic when using systems such as long-range wireless, satellite or cellular communications where bandwidth is constrained or expensive.

Reducing server-side analytics in favour of edge-device analytics reduces the amount of data that needs to be transmitted. This decision making at the edge-node IoT device also allows for relatively fast “decision making” and control of connected devices, without waiting for communications back from the server.

Quarks uses Apache Common Math to provide simple analytics aimed at device sensors, for example windowing, aggregation and simple filtering. This local processing means that devices can react locally, offload processing from central servers, and reduce bandwidth costs.

Furthermore, Quarks applications use analytics to determine when data needs to be transmitted to a back-end system for further analysis, action or storage. For example, an IoT sensor may determine whether a system is running outside of normal parameters, such as an engine that is running too hot.

If the system is running normally, you probably don’t need to send the data to the back-end system – this means additional load, bandwidth costs, and extra storage that is needed. But if your Quarks-based analytics detect an abnormal condition, you can then decide to log that data, and send the data to the back-end system to determine why this issue is occurring and how to resolve it.

This makes the whole system much more efficient, with reduced bandwidth and reduced storage requirements, while still capturing the important data where it matters. By detecting only the abnormalities and discarding the “normal” data – you shift from sending a continuous flow of data to sending only the essential and meaningful data, locally filtering the interesting from the mundane and reducing these costs.

You can write an edge application on Quarks and connect it to a cloud-computing service such as IBM’s Watson IoT platform. Quarks can also be used for enterprise data collection and analysis, such as log collectors, application data, and data centre analytics, for example.

And Quarks can be integrated with centralised analytics systems such as IBM Streams or Apache Storm to provide edge-to-centre analytics. This means you have the best of both worlds, with the benefits of both edge-device and server-based analytics and tools for decision making.

Quarks supports connectors for MQTT, HTTP, JDBC, Apache Kafka and IBM’s Watson platform, – as well as analytics systems such as IBM Streams and IBM Bluemix streaming analytics or open-source systems such as Apache’s Spark, Storm, Flink and Samza platforms.

And the best thing is that because Quarks is open-source and highly extensible, it’s possible to add support for custom connectors and analytics applications of your choice, if the currently supported systems do not meet your needs.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisImplement Internet of Things Edge Analytics with IBM Quarks

In the past few months the number of new announcements of Internet-of-Things platforms and services is outstanding – and the latest to come across our view is Autodesk’s new SeeControl IoT service – a cloud service for enterprise-level Internet-of-Things applications, aiming to help manufacturers and industrial users to connect, analyse and manage their products and the data that these systems generate.

SeeControl virtualises things such as machines, links them with reporting devices, and provides analytics to unlock the data potential trapped inside industrial devices. SeeControl services help manufacturers incorporate sensors into their products, manage them remotely, and collect the big data they provide.

With smart, connected machines enabled by SeeControl, manufacturers can offer higher service levels, reduce asset downtime and lower maintenance and material costs.

SeeControl services provide everything businesses need to achieve these IoT benefits in one place, and to get up and running quickly. SeeControl is an open cloud platform that is interoperable with a huge range of devices, as well as other cloud services, back-end systems and mobile applications – helping to deliver interconnected IoT services with strong user experiences. SeeControl offers a drag-and-drop approach to industrial IoT that enables users to innovate quickly, without advanced coding expertise.

The platform runs in Autodesk’s cloud infrastructure as a white-label subscription service, and the use of cloud computing for the SeeControl platform means that it can interconnect and scale to any desired scale with ease. SeeControl is designed to be an invisible IoT engine that provides your business with a rich toolset as a white-label solution. On top of this, you can add your own corporate branding, identity, look and feel.

The SeeControl platform provides templates for many example solutions, allowing you to quickly get used to the easy-to-use visual programming tools and edit these templates to start building your unique solutions.

The platform provides a large library of device adapters which cover a wide range of protocols and different products, helping to ensure that your solutions are future-proof and can be connected with different hardware devices and different products on the market into the future.

Using analytics and insight provided by SeeControl, you can provide customers with a uniquely improved level of service, reduce costs and run your business more efficiently. Inventory levels can be maintained more efficiently, for example.

Predictive maintenance enables parts to be ordered automatically before they’re needed, and products and machinery can be kept running at peak levels. Potential failure can be identified before it happens and maintenance downtime can be scheduled so that it will be least disruptive.

Performance of systems can be monitored, so you can see how your product performs in the real world and use live data to make product improvements and optimise future development. You can use SeeControl analytics to provide customers with real-time understanding of their products, so you can participate in the full product lifecycle and increase value to the customer – as well as bringing in an additional revenue stream through ongoing product-as-a-service solutions.

End customers may be able to predict when maintenance may be required ahead of time, as well as being able to manage spare parts, consumables, maintenance and warranty activities all in one place, in one seamless experience. If service workflows need to involve third parties, you can easily let them collaborate on their job in their portion of the system with access to this valuable data but with access only to the data that is relevant for service, maintenance or supplier needs, maintaining strong overall security.

Unlike other IoT platforms, which are device-centric and provide raw data collection and simple rule frameworks, SeeControl starts by building virtual software-based models that represent all your physical devices, machines and products, with analytics integrated into these models. SeeControl provides a universal mobile app that allows you to quickly get started with mobile connectivity to the service.

This app is customisable, and you also have the option of using the SeeControl API to build a mobile app from scratch to best meet your needs. SeeControl provides REST and SOAP APIs for data brokerage and transferring device data from legacy systems or complementary systems which will be used alongside SeeControl. For example, these APIs can be used to post device data to a Web server via SeeControl from a SeeControl-enabled system or device.

seecontrol1As well as using the APIs to connect with SeeControl, you can also use the extensive libraries in the SeeControl platform. These libraries offer extensive support of open standards and vendor-specific standards for a wide range of embedded devices, sensors and actuators, communication and networking devices and gateways. For example, existing format and protocol adapters are provided for CoAP, MQTT and Modbus, to name just a few.

If there is no out-of-the-box support for the technology that you want to connect with, you can write your own device adapter so SeeControl can support your device, using the protocol, data format and language of your choice. And when it comes to hardware, software and support for a SeeControl or other Internet-of-Things platform, the LX Group us ready to work wiwth you.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisEnterprise-level Internet-of-Things with Autodesk SeeControl

The Third Generation Partnership (3GPP) telecommunications standard-building organisation has recently introduced the new LTE-M, or LTE for Machine-Type Communications, standard.

LTE-M is intended to allow devices that operate on LTE (Long-Term Evolution) cellular networks to be less expensive, both in terms of hardware deployment and bandwidth costs, more power efficient – and generally better suited to the requirements of Internet-of-Things and M2M applications.

With IoT and M2M communications becoming more widespread, there has been a growing need for a version of LTE that meets IoT-oriented requirements of low power consumption and low cost at relatively low data rates, and this is exactly what LTE-M aims to deliver – low power consumption (up to five years for a device running on AA batteries), easy deployment, interoperability, low overall cost, and reliable wide-area coverage.

A key advantage that LTE-M has over alternative technologies for low-power wide-area IoT networks, such as SigFox or LoRA – is that it takes advantage of the existing LTE network infrastructure with no need to deploy new hardware.

Since LTE-M is able to share spectrum with standard LTE devices, this makes it a more attractive option for most mobile network operators compared to alternative LPWA technologies. Telcos only need to upgrade the software on their towers to enable support for LTE-M, without any need for hardware upgrades, which helps to keep transition costs low.

And as LTE-M is just a physical-layer change for operators, all upper-layer cellular features such as global roaming, billing, subscription management and support services can transition seamlessly.

LTE-M is also known as “Category 0” LTE, the lowest of the LTE device bandwidth classes, with a peak speed of 1Mbps. Category 0 is specifically aimed at the requirements of typical IoT and telemetry applications which require low cost and low power consumption, but not large amounts of bandwidth.

As well as reductions in power consumption and hardware cost in these more bandwidth-constrained devices, coverage range and reliability is improved, which is another desirable factor in the IoT market where devices may be used in remote areas on the edge of a network cell.  All these improvements, in hardware cost, network coverage and power efficiency, are important to ensure that IoT and M2M applications can be cost-effectively deployed on LTE mobile networks.

digital-era

These changes are becoming more important as telecommunications network operators look to shut down obsolete 2G GSM – and even 3G, in some cases – network infrastructure. In Australia for example, Telstra has announced plans to have its 2G GSM infrastructure shut down by the end of 2016 – and although this is not a concern for typical consumer voice and data services it is potentially a real problem for some embedded IoT and machine-to-machine infrastructure where 2G modems are used on Telstra’s network.

A practical transition for these systems needs to be available soon, and it needs to be cost-effective and as simple as possible.

Although the standards that define Category 0 LTE-M devices are still a year or two away from widespread use, Category 1 LTE devices are deployable now, and these are viable for many M2M applications.

For example, Sequans has introduced a Category 1 LTE chipset solution named Calliope that is available now and is specifically aimed at the needs of low-cost M2M applications. LTE Category 1, at speeds of up to 10 Mbps, has been part of the 3GPP’s LTE specifications since the earliest days, which means that LTE network operators can support Category 1 devices without any need for network upgrades.

Category 1, and later Category 0, devices provide significant cost and power reductions compared to higher-bandwidth Category 4 or higher LTE devices, but they maintain seamless coexistence with regular LTE networks.

Category 1 LTE chipset solutions like Calliope offer engineers a basis for transitioning their cellular IoT/M2M designs which is available today and is sufficiently low-cost to remain competitive with existing 2G and 3G solutions while still providing all the performance, cost and longevity advantages of LTE connectivity.

Allowing devices that don’t require high throughput, like most M2M/IoT devices, to only access the limited class of bandwidth that they need allows cellular networks to be managed more efficiently, which is another advantage of using these low-bandwidth LTE device classes for IoT applications.

LTE-M includes mechanisms that give service providers the option of designating LTE-M IoT traffic as lower-priority than voice or video traffic from higher-revenue subscribers. This capability benefits both high-bandwidth Internet users and low-bandwidth IoT users as well as the telcos themselves.

Network operators reduce costs by using a single network for latency-tolerant IoT traffic and higher-bandwidth real-time services, while also avoiding the need to carve out spectrum for IoT markets that may take some time to grow in revenue. High-bandwidth users get more reliable services and IoT users get lower-cost subscription options that cost-effectively provide the amount of data and bandwidth they need.

Overall the upcoming LTE-M specification offers a win-win for both network operators and end users’ hardware and Internet-of-Things devices. And here at the LX Group we have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisIncrease M2M Device Efficiency with LTE-M Wireless