All posts tagged: iot

The potential for the Internet of Things to improve our daily lives is almost infinite, and the technology can be applied in areas that you may have never even considered.

Let’s consider the role that Internet-of-Things technologies can play in the food industry, increasing the safety of food for consumers as well as improving efficiency and reducing overheads in the industry.

Furthermore, with the potential to address food safety challenges across the whole supply chain – wireless sensor networks, cloud computing and other IoT technologies offer potential benefits in operational efficiency and logistics across the entire food industry.

From the primary producer’s field (where environmental parameters such as soil temperature may be monitored and data interpreted over time at a central server, for example, with this data being used to improve crop yield) to stock location, tracking and monitoring of the temperatures and the age of stock right through the transport and warehousing chain – the Internet of Things can be harnessed all the way from the farm to the dinner plate.

One of the most important factors ensuring food safety is adequate refrigeration and temperature control during the transport and storage of perishable food. If temperatures aren’t controlled at an optimal level, this greatly increases the chances of bacterial growth, which can be dangerous for consumers as well as contributing to spoilage and waste of stock.

Taking advantage of wireless sensors and Internet-of-Things technologies, food and transport companies can now place networks of data logging devices in warehouses and refrigerated trucks across the supply chain, allowing environmental properties such as humidity and temperature to be continuously monitored and logged.

This data logging can provide awareness immediately if there are any abnormalities such as refrigeration failures along the way which may compromise the quality or safety of the stock. If such a fault is detected action can immediately be taken to correct it, identifying the specific location where repair work is needed in the field or identifying the stock that is affected, allowing stock to be moved to an appropriate environment.

The Internet of Things also offers an unprecedented level of collaboration between multiple different companies and business units in the food industry, handling food from the farm, through processing, manufacturing and transport, until it reaches the consumer.

Networks of connected sensors can be deployed in food factories, confirming that the product has been manufactured and stored under safe environmental conditions right up to the point where it is ready to be transported.

Transport contractors can then ensure that the right temperature and environment is maintained for the food during transit, and retailers or restaurants can use sensor network intelligence to identify and track stock that is on its way – accurately predicting when it is going to arrive at its destination.

iot food 1

This ensures more timely deliveries and allows deliveries to be scheduled at the most efficient times when they’re needed. Once the stock has arrived at its destination, supermarkets, warehouses or restaurants can use the data from these sensors to track the stock they have in storage, the age of the food in stock and the stock level, and environmental properties such as storage temperature.

These different data sources working together all the way through the supply chain help to get the food delivered in a way that is fast and efficient whilst also helping to maintain the highest standards of product quality and food safety.

Improving product quality in the food industry with the Internet of Things goes beyond preventing bacterial growth in improperly stored food, since optimising the storage environment can greatly improve the quality and shelf life of food.

For example, blackberries can lose a full day of their shelf life for every hour they are exposed to room temperature conditions without refrigerated storage – and every day of shelf life lost corresponds to a reduction in the amount of that stock that can be sold without wastage. Through the use of Internet-of-Things sensors, food distributors and vendors can not only improve the quality and safety of the product, they can reduce the amount of food wastage and increase profits by making sure that food stays viable on the shelves for as long as possible.

At this point the use of the Internet-of-Things with the food industry is a welcome and useful function and adds efficiency, safety and helps increase sales throughout the supply chain. And if you’re interested in applying this to your own interests – the team at LX is ready when you are.

Our team of solutions architects, engineers and specialists is ready to partner with you for your success in the IoT marketplace. Getting started is easy – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisImproving food supply chains with the Internet of Things

During this year’s recent I/O conference, Google announced Brillo, their new operating system targeted at Internet-of-Things applications.

The Brillo OS is a derivative of Android, and be described as a streamlined and cut-down version of Android – targeted towards IoT and smart-home applications on low-power embedded devices with constrained memory and other resources.

According to Google, Brillo is an operating system for the Internet of Things that will connect devices through a communication layer called Weave, which “provides seamless and secure communication between devices, both locally and through the cloud”.

As Brillo is based on the lower levels of Android, you’re likely to be able to choose from a wide variety of hardware platforms and silicon vendors that will be compatible with the Brillo OS. With this all-in-one operating system, you can focus on building your hardware and applications – everything else you need for an end-to-end IoT solution is already built in. Furthermore, Brillo provides a Web-based console for device administration – providing update services, crash reporting and metrics for your devices and making system management inexpensive and accessible.

Brillo provides a kernel, hardware abstraction, connectivity, and security infrastructure within a limited memory footprint, which is ideal for inexpensive and smaller devices. At the time of writing the specific range of supported chipsets and hardware requirements for Brillo are currently unknown, however it has been estimated that it will run on devices with as little as 32 to 64 Mb of RAM – making it a lot more lightweight than regular Android builds.

Furthermore Brillo support is being integrated into the Google mobile platform and Google Play, so support for connectivity to Brillo-equipped devices is built-in to devices (such as smartphones) that run Android, and is easily available for iOS. Android devices will auto-detect Brillo and Weave devices.

It appears likely that Brillo will support wireless communications standards specifically relevant to the IoT market, such as Thread, on supported hardware, along with common Wi-Fi and Bluetooth communications.

For device OEMs, using Brillo means you can build new devices and products quickly and securely, without having to worry about software updates. For other operating systems, you can just add a compatibility library to connect with Brillo devices over Weave.

For app developers, interoperability with Brillo and Weave can extend the reach of your apps to the physical world. You can build one app to control multiple devices in the home and work environments, leveraging Google services such as voice-control actions.

With Brillo, Google is aiming to build an operating system that device manufacturers can put on their devices to ease the process of getting a device online, manage the connectivity and many of the lower-level hardware functions that device manufacturers probably don’t want to deal with.

google brillo project lx group 2

For end users, Brillo-based and Weave-based IoT applications give users confidence that their connected devices will work with each other, and work with different smartphones and devices. Brillo and Weave promise to make the IoT easy-to-use for end users, since automatic setup, provisioning and easy-to-use sharing is built in.

The second part of Google’s recent announcement concerns Weave – a communications framework for IoT devices that allows different devices to talk to each other. It’s a cross-platform, common language that will let Brillo devices, smartphones and Internet services all talk to each other, addressing the challenge of IoT interoperability.

Weave is cross-platform, and it exposes APIs for developers, making it valuable for OEMs and app developers trying to link their cloud-based services to devices communicating with Weave.

Weave is not a separate protocol, but rather lightweight schema developers can use for standardised and interoperable communications. It provides a common language and vocabulary so that IoT devices can advertise their capabilities to other devices on the network and expose the different functions that they offer, defining certain devices and what they can do.

According to Google, “Weave promises to be “the IoT protocol for everything – from phone to device to cloud”. The idea is to create a standard way for each device in the home or building to explain to the other devices what it’s capable of and what it’s doing right now, so they can all work together as a team.

This functionality that Weave offers appears to be broadly comparable to Apple’s HomeKit system in terms of device discovery, configuration and communication – it’s basically the glue that connects together a bunch of disparate networked devices from different vendors, turning them into a rich system for automation and interoperability.

Furthermore, Google’s Weave program aims to standardise quality and interoperability across different manufacturers through a certification program that device makers must adhere to for their devices to be “Weave Compatible”.

As part of this program, Weave provides a core set of schemas that will enable apps and devices to seamlessly interact with each other. “We want to connect devices in a seamless and intuitive way, and make them work better for users”, according to Sundar Pichai’s announcement at Google I/O.

Brillo and Weave represent a key public development in Google’s offerings in the IoT and home automation market, which has been fairly quiet following last year’s acquisition of Nest Labs. The Nest thermostat and future devices in the Nest ecosystem will also use Weave, so devices from other manufacturers can easily and securely interoperate with these Nest products.

This new development from Google is highly-anticipated by all of us in the Internet-of-Things development community, and the team at LX is ready when you are. Our team of solutions architects, engineers and specialists is ready to partner with you for your success in the IoT marketplace. Getting started is easy – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisProject Brillo – Google’s development platform for the Internet of Things

Samsung has recently announced their ARTIK Internet-of-Things platform, aimed at enabling faster, simpler development of new enterprise, industrial and consumer-facing IoT applications and products. ARTIK is an open platform that includes a family of powerful integrated hardware modules, advanced software, development boards, drivers, tools, security, cloud and wireless connectivity features designed to help accelerate development of a generation of better, smarter IoT devices, solutions and services.

According to Samsung, in ARTIK they are providing the industry’s most advanced, open and secure platform for developing IoT products. By leveraging Samsung’s established full-stack expertise in embedded mobile hardware and software, RF design, silicon-level component fabrication and packaging, consumer-facing design and high-volume manufacturing. Thus Samsung’s ARTIK is well positioned to allow developers working in the Internet-of-Things space to rapidly turn great ideas into market-leading products and applications.

The platform is based around a series of hardware modules and supporting software optimised for Internet-of-Things products and similar applications, with each building-block module fitting a powerful processor, rich connectivity and robust security inside a very small package.

This includes a variety of hardware configurations tailored to meet the requirements of a wide range of IoT needs, from wearable computing and home automation to smart lighting and industrial applications. With multiple tiers of hardware allowing you to optimise performance, memory, physical footprint and cost as needed, ARTIK can scale to support a variety of applications from small battery-powered devices through to powerful network gateway appliances with storage, local processing and media capability.

Depending on the configuration, the ARTIK family supports all major wireless connectivity technologies such as Wi-Fi, Bluetooth (including Bluetooth Low Energy) and 802.15.4/ZigBee. All devices in the ARTIK hardware family include multi-core ARM processors and integrated Bluetooth Low Energy wireless connectivity.

ARTIK 1, the smallest and most power efficient ARTIK module, is the smallest complete network-connected IoT compute module currently on the market, combining Bluetooth Low Energy connectivity and a 9-axis inertial measurement unit with powerful compute capabilities and efficient power consumption all in a tiny 12mm-by-12mm package.

 

This module is designed specifically for low-power, small-form-factor mobile IoT applications, and can provide weeks of runtime on a single battery charge. According to Samsung, an ARTIK-based smart watch can run for three weeks on a single charge while being kept in always-on mode and paired to a Bluetooth-enabled smartphone.

The next model up, the ARTIK 5 – incorporates a 1 GHz dual-core processor, increased on-board DRAM and Flash memory – delivering a powerful balance of size, power efficiency, price and performance which is pitched by Samsung as being ideal for home automation hubs, high-end wearable computing applications and autonomous vehicles such as UAVs, where greater amounts of computing power and more wireless networking options are required.

The ARTIK 5 module uses Samsung’s ePoP (Embedded Package-on-Package) packaging technology to offer significant computing performance and storage capacity in a very compact form factor, enabling a broad range of size-sensitive devices and applications.

The most powerful device in the ARTIK hardware family, the ARTIK 10, is pitched at applications in home automation servers, embedded multimedia and industrial applications. It delivers high performance for IoT and embedded multimedia applications, with an eight-core ARM processor, full 1080p video encoding and decoding, 5.1 audio, and 2Gb of DRAM with 16Gb of Flash memory for plenty of media storage. It is ideal for applications with heavier local performance and storage requirements or demanding video encoding and playback needs.

The ARTIK 5 and ARTIK 10 models also include Wi-Fi, dual-mode Bluetooth support, 802.15.4/ZigBee and Thread network connectivity, making them potentially very useful as gateways or bridge devices in home automation networks, connecting together many different kinds of wireless IoT devices.

All the hardware platforms in Samsung’s ARTIK family include advanced embedded hardware security technology, on-board storage and strong processing power in an open platform.

Samsung ARTIK 1

Security is a key element of the software integrated into the platform, along with the ability to connect to the Internet for cloud-based data analytics and Web services. The ARTIK platform comes with an extensive IoT software stack and tools to help you accelerate product development.

Developers can go directly to application framework development, instead of spending time building low-level software libraries. Every ARTIK device comes pre-loaded with the Temboo software stack for connected devices, which aims to help ARTIK developers quickly and easily develop connected ARTIK-based IoT applications.

In conjunction with the Temboo website, this lets you quickly generate code for the IoT applications you’re building. To demonstrate how this can be used, Samsung has demonstrated a reference design for a smart IoT water tank monitoring system, based on Temboo and ARTIK.

Rather than spend your time writing low-level libraries, ARTIK enables you to use the ARTIK development tools and open APIs provided by Samsung to bring wearable technology, smart devices and wireless network hubs to market more quickly, cheaply and easily. ARTIK provides a platform for developers who simply want to focus on building and testing their new IoT ideas.

And with the help of our team here at LX, we can bring your IoT device product ideas to life. From the whiteboard to the white box – we’ll partner with you to for your success. Getting started is easy – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisARTIK – the new IoT platform from Samsung

With the increasing popularity of Internet-of-Things connected products, security of these devices and their networks is a growing concern.

Let’s consider potential security vulnerabilities that can exist in Internet-of-Things appliances, and how these security threats may be mitigated. Security is a particular concern in the context of home automation devices and Internet-of-Things connected appliances in the home because hardware and/or software vulnerabilities in these devices have the potential to affect the security of homes, buildings and people.

Security vulnerabilities in these connected devices, such as home automation hubs, could potentially allow attackers to gain control of door locks or other actuators, access video cameras or otherwise compromise physical security.

Recent research from security firm Veracode has found that many of today’s popular “smart home” devices have security vulnerabilities, which are open to exploitation. The researchers examined a selection of typical always-on IoT home automation appliances on the market in order to understand the real-world potential impact of security vulnerabilities in these kinds of products.

The products that were studied by the researchers included the MyQ Internet Gateway and the MyQ Garage, which provide Internet-based control of devices such as garage doors, power outlets and lighting, the SmartThings Hub, a central control device for home automation sensors, switches and devices such as door locks, the Wink Hub and Wink Relay networked home automation products, and the Ubi home automation gateway.

These devices are just a representative sample of today’s popular “Internet-of-Things” appliances in the consumer market.

The Veracode researchers didn’t look for vulnerabilities in the firmware of the devices they looked at, but instead analysed the implementation and security of the communication protocols they use.

The researchers looked at the front-end connections, between the users and the cloud services, as well as the back-end connections between the cloud services and the devices themselves. They wanted to know whether these services allowed communication to be protected through strong cryptography, whether encryption was a requirement at all, if strong passwords were enforced and whether server TLS certificates were properly validated.

Researchers found that of the six products examined, only one enforced the strength of user passwords at the front end, and one of the products did not enforce encryption for user connections.

This research also looked at the back-end cloud service connectivity in these products, whether the devices used strong authentication mechanisms to identify themselves to cloud services, whether encryption was employed and whether safeguards were in place to prevent man-in-the-middle attacks and if sensitive data was protected – for example by hashing clear text passwords and transmitting only the crucial data needed across the Internet service.

What they found was a general trend towards even weaker security, with two of the products tested not employing encryption for communications between the cloud service and the device.

It was also found that one of the devices did not properly secure sensitive data, and man-in-the-middle attack protection was lacking across all the devices tested, with the exception of the SmartThings Hub, either because TLS (Transport Layer Security) encryption was not used at all or because proper certificate validation was not used.

This research suggests that connected products, marketed as appliances for the household consumer, have been designed with the assumption that the local area networks that they’ll be installed on are secure.

However, that seems to be a mistake since we know that if there’s anything worse than the security and user configuration we see with these new connected products, it’s the security of WiFi routers.

Researchers find serious vulnerabilities in consumer routers and their firmware routinely, and many of these have the potential to enable attackers to perform man-in-the-middle attacks on data going out to the Internet or to other devices on the LAN.

A quick search online and you can find default passwords for many IoT devices – often left unchanged or unable to be changed by users – and the security features in place are often very limited. User instruction and education can play a large part in minimising potential problems here – for example, choosing strong passwords, both for the Wi-Fi router as well as for devices connected to it, and regularly checking for and installing firmware or software updates provided by vendors.

This study is a good reminder to users to keep their networks secure by using strong passwords and security settings, across their PCs, phones or other devices, wireless access points and routers, as well as smart IoT devices. Furthermore, the research team also explored device debugging interfaces and services that run on these IoT devices which aren’t intended to be accessed by end users.

The team only investigated interfaces that are accessible over a network, whether over the local area network or through the Web. For example, attacking a device through a hardware interface, plugging a JTAG probe into a smart light bulb, is not considered to be a significant security threat compared to network-connected services. 

security2

This research explored whether access to these hidden services was restricted to users with physical access to the device, if open interfaces are protected against unauthorised access, and whether open interfaces are designed to prevent an attacker who gains access to these interfaces from running arbitrary code on the device.

The Veracode research found that the Wink Hub runs an unauthenticated HTTP service on port 80 that is used to configure the wireless network settings, the Wink Relay runs a network-accessible ADB (Android Debug Bridge) service, the Ubi runs both an ADB service and a VNC remote desktop service with no password, the SmartThings Hub runs a password-protected telnet server and the MyQ Garage runs an HTTPS service that exposes basic connectivity information.

It is simply assumed that all these things are secure because the wireless LAN they’re on is secure, but this is commonly not true and these networks are secured poorly or not at all. For devices with exposed ADB interfaces, this can provide attackers with root access and can allow them to execute arbitrary code on the device.

At this point the casual observer may consider all these new consumer IoT-based devices to be a security risk, however if developed by the right team nothing could be further from the truth. With a great design team and user education security can become a non-issue for the end user.

The easiest part is to find the right designers for your IoT-based product – and here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisSecurity concerns with consumer IoT devices

One of the latest and most power-efficient 32-bit microcontroller options on the market today is Atmel’s new SAM L21 MCU family, specifically aimed at power-efficient battery powered devices in wireless sensor networks and the accelerating Internet-of-Things market.

The Atmel SMART SAM L21 family, based on the ARM Cortex-M0+ core, boasts ultra-efficient current consumption as low as 35 micro amps per MHz with the chip in active mode and as low as 200 nano amps in the deepest sleep mode.

This best-in-class power efficiency is said to have the potential to “extend battery life from years to decades” in power-optimised sensor network and Internet-of-Things applications. These chips draw less than 1 micro amp with full SRAM retention, real-time clock and calendar running, making the SAM L21 family the lowest-power Cortex-M based microcontroller solution on the market.

With a 42 MHz Cortex-M0+ core, which is the smallest 32-bit ARM core, 256 kB of flash memory and up to 40 kB of SRAM, these chips obviously aren’t intended to compete with high-end mobile processors in terms of performance. However, these small, power-efficient microcontrollers are still powerful enough to support touch interfaces, AES encryption, and wireless communications – for example running both the application and wireless stacks in a typical wireless end-node IoT application.

Also included is up to 8 kB of separate low-power SRAM that is kept powered at everything short of the deepest sleep mode – even off a low-power backup battery when the main battery is exhausted. The Cortex-M0+ is a fairly modest embedded ARM core in terms of its relative performance – it’s an optimised version of the Cortex-M0, with one less pipeline stage to reduce power consumption and with a few features from the more capable Cortex-M3 and M4 families also added.

The SAM L21 is the lowest-power Cortex-M0+ based device family presently on the market, and it expands Atmel’s product offering beyond the SAM D family, aimed at the next generation of ultra-low-power embedded devices.

Among the updated peripherals included on the L21 is a low-power capacitive touch-sensing controller, for touch-sensitive surfaces such as buttons, sliders or wheels. The capacitive touch peripheral can run in all low-power operating modes, and supports waking up the microcontroller from sleep when the sensors are touched.

Architectural innovations in the SAM L21 family enable low-power peripherals such as timers, serial communications and the touch controller to remain powered up and running as needed while the rest of the system is in a reduced-power sleep mode.

Nearly every peripheral system has been optimised for energy efficiency and for the ability to operate in a standalone mode without the entire chip being powered up and active. The energy-efficient L21 design goes much further than simply turning off clock distribution to the various peripheral devices on the chip when they are powered down – it completely shuts down the power to peripherals and segments of the die that are not currently in use.

The SAM L21 supports energy-efficient “sleepwalking”, which allows peripheral devices to request a clock source when they need to wake up from sleep modes and perform tasks – without having to power up the CPU, the Flash and other relatively power-intensive CPU support systems.

As an example of a real-world energy-efficient Internet-of-Things application, suppose the chip’s internal ADC is used to measure temperature in a room. You can put the CPU to sleep and wake up periodically on interrupts from the real-time clock, providing very efficient power consumption. The measured temperature can be checked against a predefined threshold to decide on further action, and if no action is required the CPU can be put back to sleep until the next interrupt is fired from the RTC at the interval desired.

During an analogue sensor read, the ADC clock will only be enabled and running when the ADC conversion is needed. When the ADC receives the trigger event from the real time clock it will request its generic clock from the generic clock controller, and this peripheral clock will stop as soon as the ADC conversion is completed.

The event system is configured to send this event from the real-time clock to the ADC, and the ADC is configured to start a conversion when it receives an event – but this is done without the need to power up the CPU at all, minimising the power budget. However, the ADC can be configured to look at its reading, check if a certain threshold is exceeded, and to generate an interrupt for a different task – waking up the CPU for example, if we decide that data logging, radio transmission or some other CPU action is needed in response to an extreme temperature value.

As with most of Atmel’s microcontroller products, Atmel is offering an Xplained Pro evaluation board for the SAM L21 microcontroller family. This evaluation board features an on-board debugger, standardised extension connectors compatible with the other expansion boards and modules in the Atmel Xplained development board ecosystem, and auto-identification in Atmel Studio.

Atmel 1

Along with the rest of Atmel’s development tools and boards, this evaluation board is powerful and flexible yet easy to use, for both professional and hobbyist-level developers.

Using the SAM L21 Xplained Pro board and Atmel Studio, designers can monitor power consumption in conjunction with the program counter in real time, and if a spike in power consumption appears you can loop back to see what’s causing it in the software and code accordingly.

Thanks to Atmel your new or existing Internet of Things devices can increase their autonomy and allow you to reduce device size and weight thanks to the use of smaller battery capacities – and of course saving you money as well. If this is of interest to you – and why wouldn’t it be – here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisReduce IoT power use with Atmel SAM L21

Industrial behemoth General Electric have now entered the Industrial Internet arena with their new “Predix” product – a new software platform and ecosystem aimed at a wide spectrum of machine-to-machine applications and “Industrial Internet” applications.

Predix is aimed at making it easy to connect machines to the Industrial Internet, to embed analytics into machines, making them somewhat intelligent and self-aware, and to retrofit and upgrade machine software without mechanical modifications though a platform which essentially provides the equivalent of cloud computing for the Industrial Internet.

One of the main goals of Predix is to offer connectivity to industrial assets of any vintage, from any vendor, to the cloud and to each other – meaning that your industrial applications can benefit from the asset performance management and operations optimisation that Predix makes possible, whether or not the other equipment and systems you use are GE products.

Predix enables industrial-scale analytics for asset and operations optimisation by providing a standard way to connect machines, data and people. Predix can be used as a platform to build apps for any industry or sector – by customers, OEMs, or developers, with the goal of efficiency improvement across a range of industries from automotive to building management to agriculture.

Furthermore Predix aims to connect people with intelligent machines and advanced analytics, giving you new levels of actionable insight, helping you optimise system operations and respond to situations as they arise. As part of this goal, the system helps you gain actionable insights from massive volumes of machine data flowing in rapidly, and to manage all assets from individual parts on the factory floor up to entire “smart factories”.

Operators can orchestrate analytics processing in real time across distributed machines and data, and get industrial-grade control and insight with modern consumer-style sleek user experiences across different platforms including mobile devices.

Predix can operate as a cloud-agnostic platform that can run on local servers, in your data centres, or in public clouds – with support for a scalable big-data computing fabric including the Apache Hadoop open-source framework for reliable, scalable, distributed computing, as well as support for historians and graphs.

You can control data across machines, networks and clouds in a resilient and secure way, with high availability for mission-critical applications, and you can control access to assets while enhancing communications between machines, networks and systems.

GE believes that industrial customers want predictability about performance and better asset management, and this is what the Predix platform helps to deliver. Over the coming year, GE aims to include connected sensors and Big Data capabilities in almost all of the company’s new products.

Development is still ongoing, as GE has also announced partnerships with AT&T, Intel and Cisco for the development of the Predix platform. Existing examples of products from GE that incorporate this technology include control of a jet engine aimed at maximising fuel efficiency while monitoring greenhouse gas emissions – which is predicted to save an airline $90 million over five years. A similar product, which optimises the efficiency of a gas turbine for power generation, is expected to save an energy utility $28 million per annum, while also reducing greenhouse gas emissions.

Applications can be built for any system or machine – from jet engines to MRI scanners – and be remotely managed while connected to the Internet. So far there are four components to the platform, for the sensors themselves, analytics, management of the connected devices, and a user interaction component called Predix Experience.

In 2016, GE plans to offer a developer program that lets third parties integrate Predix platform technologies into their own services. Under their part in the new Predix partnership, AT&T will develop device and sensor connectivity via cellular, PSTN and Wi-Fi connectivity. GE says its partnership with Intel will embed virtualisation and cloud-based, standardised interfaces within the Predix platform.

The Predix platform aims to eventually bring all of GE’s industrial machines together into one contextually aware, cloud-connected system. By connecting machines to the network and the cloud, Predix aims to enable workers all around the world to track, monitor and help maintain industrial machinery remotely through highly secure machine-to-machine communications.

Bringing together all machines, from wind turbines to medical imagers to jet engines, into a single, unified but contextually aware platform for all their operation and maintenance aims to deliver significant efficiency gains and reductions in downtime for GE and their customers.

The Predix platform is scalable, supporting high-volume analytics, industrial data and operational management, across individual machines and entire networks, on-premise, in the cloud, or in a hybrid environment. The platform is adaptive, allowing applications to be customised and extended across industries and their assets, data sources and devices, both mobile and fixed.

The development environment also enables the creation of new apps that can leverage mobile use requirements in an OS- and hardware-neutral fashion. The promise of Predix goes beyond cohesiveness and convenience. The real vision is to link all these diverse machines to the cloud, quantifying their performance and benchmarking them against each other – all in the name of improving efficiency and reducing unscheduled downtime.

ge predix 2

The idea for the platform goes far beyond giving engineers a touchscreen manual for repairs. It’s really about creating a resource that knows exactly what needs to be done to optimise any machine at any moment, with a contextual understanding of that device.

Eventually, Predix will make sure everything’s on the same page, from the machine in question to the enterprise software in the cloud down to the tablet or other device carried by the maintenance engineer in the field.

And this is the benefit of the Industrial Internet – to give operators knowledge and control over their devices to maximise operational efficiency, minimise downtime and costs – in order to maximise profit. And no matter whether you’re looking to optimise a few local sensors or monitor devices from around the globe – here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisPredix – GE’s new Software Platform for the Industrial Internet

Kaa is a highly flexible, open-source middleware platform for building, managing, and integrating connected Internet-of-Things applications. The Kaa IoT platform aims to provide a standardised approach for integration and interoperability across connected products. With a powerful back-end Kaa speeds up IoT product development, allowing product developers to concentrate on maximising their product’s user experience and unique value to the consumer.

The Kaa middleware supports multiple client platforms by offering endpoint SDKs for various different platforms and different programming languages, and Kaa’s “data schema” definition language provides a universal level of abstraction to help achieve cross-vendor product interoperability – making it a very agile and flexible platform, with standardised methods for enabling integration and interoperability across connected products.

Kaa is designed to be robust, flexible and easy to use, enhancing your IoT products out of the box with a variety of functions. Thanks to being licensed under the business-friendly Apache 2.0 open source license, including the server and client components – Kaa is completely open source and it is free to use in open source or proprietary environments with no royalties or fees.

The source code of the Kaa platform is hosted on GitHub, and you can view it as well as making community contributions. Debian and RPM packages are available, ready for installation of the Kaa server on your target platform – after the installation you can use the Kaa Web UI to obtain the endpoint SDK and get started with Kaa.

The Kaa server is architected to scale linearly with the simple addition of nodes to the cluster, providing the capability for large-scale applications. Kaa features logic for on-the-go load re-balancing, based on real-time service demands, SLAs, node availability, server load and performance, providing efficient utilisation of hardware resources. The Kaa IoT platform is a middleware platform that abstracts the underlying data transport mechanism.

This approach offers application architects the freedom to choose a network stack, or a combination of several stacks for various platform functions, that best suits the requirements of a specific product.

Various different protocols and technologies can be used for the lower levels of the network between the server and endpoints – for example Wi-Fi, Ethernet, ZigBee, MQTT, CoAP, XMPP, TCP, HTTP and more, at the relevant layers of the network stack.

The Kaa platform is comprised of the server component and an endpoint SDK that integrates with client applications. When a Kaa server registers a new endpoint, an associated endpoint profile is created. Kaa’s event system performs discovery of the advertised capabilities of each endpoint device and the delivery of the appropriate event messages across devices.

Kaa stores a profile for each endpoint device, which is a snapshot of any data the specific server application needs to know about the endpoint device. This could include information such as OS version, amount of RAM, device operation mode, battery life or type of network connection, for example.

Endpoint profiles can be used to organise the endpoints into groups, and this can be used to send targeted notifications to certain devices, for example, or adjust software behaviour when talking to certain classes of devices. The specification of the profile structure is configured using Kaa’s profile schema definition.

Based on the defined profile schema, Kaa generates the object model to operate against the client side, and handles data marshalling all the way back to the database. Whenever a client updates its profile information, the endpoint SDK automatically sends these updates to the server as soon as a connection becomes available.

An endpoint can belong to any number of groups, which represent independent management entities in Kaa. Grouping endpoints can, for example, be used to send targeted notifications or adjust software behaviour by applying group-specific configuration overrides. When endpoints register with the Kaa server, they advertise the types of event classes they are capable of originating and receiving.

Kaa features a topic-based notification system that enables the server to deliver messages of an arbitrary structure to subscribed endpoints. Events can even be delivered across applications registered with Kaa – making it possible to quickly integrate and enable interoperability between ranges of different devices.

Kaa2

For example, you could enable a mobile application to control lighting, or use data from a car’s GPS to communicate with a home security system, or integrate audio systems from different vendors to deliver a smooth playback experience as you move from room to room. Kaa events are implemented in a generic, abstract way, using non-proprietary schema definitions that ensure identical message structures.

The schema provides independence from any specific functionality implementation details, and Kaa’s logging subsystem performs the collection and storage of structured data that is received from the endpoints.

Depending on the implementation and configuration of server-side log appenders, the Kaa server is able to store records in a local file system, or a variety of big data platforms such as Hadoop or MongoDB, or submit them directly to a streaming analytics system.

The endpoint SDK implements log-upload triggers that initiate the periodic upload to the server of logged data stored locally on endpoint devices. The structure of the collected data is flexible and defined by the data schema – based on the log data schema defined in the Kaa application, Kaa generates the object model for the records and the corresponding API calls in the client SDK. Kaa’s endpoint SDK deserializes received messages into objects, which are dispatched to subscribed client listeners for processing.

Althuogh the Kaa middleware is open-source, this isn’t a negative – it allows the end-user developer to work with the code to meet their exacting needs or create partnerships with other users for greater interoperability between products. You can learn more about Kaa from their website (http://www.kaaproject.org/).

And if you have an idea for a new IoT-enabled product or would like to add connectivity to an existing device – here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisKaa – a new open-source platform for the Internet of Things

Even though the design and development of electronic systems, and firmware in embedded systems, differs from conventional software application development in many ways – there is an increasing awareness in the hardware and embedded engineering fields today about Agile development methods.

 The accelerating rate of technological change for electronic products requires rapid market responsiveness to maintain a competitive edge, and this is especially true in today’s world of ubiquitous mobile connected devices and Internet-of-Things technologies.

 In one recent survey, 76% of software developers today see electronic hardware as a key element in turning many software ideas into products ready for market. This highlights a need for product innovators – growth of new markets like the Internet of Things demand practical tools to make physical design more efficient without sacrificing product quality, and Agile methods are one of the tools that can potentially play a role here.

 Hardware is different from software, so rather than attempt to transfer Agile practices directly to hardware development, some careful consideration about what the differences are, what is really relevant and what is not most relevant, will allow the most effective adoption of Agile management techniques in the electronic design and embedded systems industry.

 Agile project management methods can be used effectively in a hardware environment, by mechanical or electronic development teams, but some adaptations might be needed on a case-specific basis. However, this is already the best practice recommended in an Agile environment for software development teams.

Many large companies use Agile techniques in their development today, including Yahoo, Microsoft, Google and many others. The WikiSpeed startup employs heavy use of Agile management techniques in their mechanical engineering projects, delivering a novel car built from composite materials that offers extremely high fuel efficiency while also being safe and road-legal – designed and built from scratch in only 3 months using crowd funding, made viable thanks to the cost-effectiveness of their Agile practices.

However, some companies prefer the perceived stability and predictability of a traditional development process. Traditional use of comprehensive documentation and contracts is viewed as protecting them from risk and having one team follow the work of another.

 There are also special hurdles when you’re combining hardware and software in one product, and most Agile experts, even with extensive software project experience, are not yet used to working with these issues. Some common challenges and concerns that are raised against the use of Agile methods are that more revisions and versions mean more data to manage, and that changing procedures and tools means added costs. There is the view that fewer contracts and specifications could mean higher risk, and that effective, useful communication and coordination is more complicated in an Agile environment.

 One of the challenges for combined software and hardware development is that software can normally be developed fairly rapidly, and the development broken down into smaller chunks with more rapid iteration. Hardware, on the other hand, may require many months to show a working component or feature.

 If the software must wait for the hardware to be created for final testing, this can create testing delays. Use of rapid prototyping technologies such as 3D printing can be valuable here for mechanical and plastics design, as can the use of modular electronic design, with smaller subsystems that can be iterated more rapidly, demonstrated, and tested independently of the whole system.

 Writing user stories that span hardware and software allows for the interdependencies to be understood. There might be some software that the hardware team needs to test their first prototype; the teams can ensure that the required stories are correctly prioritised to support this. Similarly there may be software that is most efficiently developed once hardware is available (perhaps low-level interface drivers); these can be prioritised based on the hardware delivery schedules.

 Because hardware often isn’t available until near the end of a project for actual deployment and testing, virtual versions of the hardware such as mock-ups, simulations and emulations are often an important part of hardware development using Agile techniques.

 Modelling and simulation allow testing and integration to begin as soon as the design work begins, which eliminates the delays that might be experienced if the hardware isn’t yet available. It can save significant investment in unnecessary early prototyping of architectures that aren’t viable.

 One method of dealing with hardware that isn’t ready to test is to decouple software and hardware development, via an abstraction layer, to allow software development to continue more rapidly. The challenge is to find a method that allows the rapid development of software and concurrent development of the hardware in a way that can best meet the requirements of each process.

Heat-Strap-Image-160x130

 Hardware abstraction layers enable concurrent hardware and software engineering by allowing software development and testing to start prior to hardware availability. This valuable practice can also provide input into the hardware requirements and help most efficiently refine the boundary between hardware and software.

 Therein lies the challenge of embedded hardware design using Agile methodologies – software and hardware teams need to be challenged to work together for the desired outcome in the available amount of time. And as a leading developer of embedded hardware, products and services from design through to product manufacturing and support – here at the LX Group we have the team, experience and technology to bring your ideas to life.

 Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

 LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisAdoption of Agile for Embedded Hardware Design

In what would seem to be an already crowded marketplace, Ayla Networks have introduced their new agile, cloud-based Internet-of-Things “application enablement” platform that makes it easy and cost-effective for OEMs to connect any of their products or devices to the Internet.

Ayla’s pervasive software creates an adaptive fabric for IoT applications, which aims to accelerate the development and support of smart, interactive product solutions from the device level, to the cloud, to the application level. The Ayla IoT Cloud Fabric combines innovative cloud-based services with powerful software agents integrated into both embedded IoT end-node devices as well as in mobile device applications.

By working closely with Broadcom, Ayla can deliver Embedded Agents supporting Broadcom’s WICED embedded Wi-Fi platform, and Ayla has also partnered with USI to deliver production-ready Wi-Fi Modules incorporating the Ayla Embedded Agent, bringing connected modules and services to market that will allow manufacturers to quickly and economically join the Internet of Things.

The Ayla Design Kit gives you an easy path to get started with securely connecting your product to Ayla’s flexible cloud platform and application libraries. Ayla’s reference design kit provides an out-of-box solution based around an STM32 microcontroller, a Wi-Fi module from Murata pre-loaded with Ayla’s Embedded Agent and a demo mobile app that enables you to quickly get started connecting to Ayla cloud services.

There’s no need to know anything about socket programming or to develop any networking code or learn how to provision a cloud service, because Ayla’s design kit provides you with out-of-the-box Wi-Fi cloud connectivity that is very easy to use.

You can start programming the on-board microcontroller right away, or connect the Wi-Fi development board into your existing microcontroller or the hardware in your product.

Supplied with the Ayla design kit you’ll find microcontroller driver source, demo applications and Ayla’s Application Libraries, which will help enable you to create great apps that securely control your Ayla-enabled hardware with a smartphone or tablet, with support for Android and iOS applications or Web interfaces.

With the Ayla Design Kit, you’ll get an account on Ayla’s Developer Portal, where a simple UI-driven design allows you to build or modify templates for your products in just minutes. Just sign up for a developer account, define a new template, and when you use the same named properties in your design, Ayla will take care of connecting the device and the cloud and keeping them in sync.

The Ayla Design Kit will also give you access to Ayla’s support site, with documentation and how-to guides to assist with your product development, from porting guides for SPI drivers to documentation on connecting to other cloud services through the RESTful APIs that Ayla provides for connectivity with outside services. You can also sign up for a support package that meets your needs.

When you’ve registered your developer and tech support accounts, which are free for users of the Ayla design kit, you can follow Ayla’s online support tutorials to walk through the Design Kit setup process, and you’re ready to get your Design Kit connected to the cloud.

The Ayla platform’s architecture is composed of three primary components – Ayla Embedded Agents, Ayla Cloud Services, and Ayla Application Libraries. Ayla Embedded Agents run on IoT end-node devices or IoT device gateways. They incorporate a fully optimised network stack along with additional protocols to connect devices to Ayla Cloud Services. Developers can choose to use Ayla-supported Wi-Fi networking modules alongside essentially any existing microcontroller in their system.

Ayla Cloud Services are the brains of the Ayla solution. The distributed, cloud-based architecture delivers connectivity with high efficiency, without forcing you into business models requiring ongoing payments. Ayla Cloud Services offer a full suite of intelligence about your product’s performance.

Furthermore, Ayla Application Libraries contain rich APIs for creating apps to securely control Ayla-enabled products with a smartphone or tablet, via iOS or Android native apps or from a web interface.

By abstracting the security and protocol complexity of communicating with the rest of the Ayla platform, Ayla Application Libraries present developers with a virtual device object which is easy to interact with.

When it comes to developing a mobile app, Ayla provides a demo app with the Ayla Design Kit to showcase its cloud-connectivity functionality as well as mobile app libraries to help you create your own Ayla-connected apps, with support for both iOS and Android application development.

Ayla IoT 1

With Ayla’s IoT platform you can focus on your UI and customer experience, and leave the platform to take care of the back-end networking, authentication, security and provisioning for you.

The Ayla IoT cloud platform is built for enterprise applications, and it can support your IoT products and applications at any scale. The platform is fully equipped for security, flexibility, operational support, and data analytics – all the capabilities and tools that commercial IoT vendors and developers need to scale their product support at enterprise scales.

And as a leading developer of embedded hardware, IoT products and services from design through to product manufacturing and support – here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisAyla Network’s IoT Cloud Platform

In an effort to expand their reach into the Internet of Things marketplace, Microsoft has launched their Windows Internet of Things Developer program – the first in a series of programs aimed at promoting and educating developers in the use of Microsoft products and technologies for the creation of connected devices and Internet-of-Things applications.

Microsoft’s program is aimed at Windows programmers and embedded systems engineers as well as the hobbyist and “maker” community.

Microsoft aims to bring Windows and development tools such as the Visual Studio suite to a new class of connected devices such as the Intel Edison and Raspberry Pi platforms, low-cost platforms that are attractive for both hobbyist and commercial embedded computing applications.

This should bring synergy with existing developers and the needs of marketing and new IoT-enabled product development in the same organisation – existing IT resources can be used to help with IoT development without too much retraining or new hires.

Microsoft wants to combine the accessibility of the successful Arduino platform with the strong community support and proven experience base behind Windows and Visual Studio, allowing you to quickly iterate and expand on hardware and software designs using existing shields and sketches, with strong compatibility with the Arduino platform at both the hardware and the software level.

The Windows IoT Developer Program was announced last year, beginning with Windows support for Intel’s Galileo single-board embedded computing platform. The addition of the new Raspberry Pi 2 to the program has just been announced, including support for a new embedded Raspberry Pi 2 version of Windows 10, which will be freely available for embedded developers and makers who are members of the program.

Microsoft is hoping that this program, and support for the Raspberry Pi and Galileo platforms, will introduce the use of embedded Windows and Visual Studio development to independent developers and the hobbyist and maker community.

Microsoft has ported the Arduino and Wiring libraries to their embedded Windows IoT offerings, so you’ll be using Visual C++ to write code against the Arduino API. It looks a lot like Arduino programming, with some minor differences.

Intel sells their Galileo development boards with a lightweight version of Linux through distributors, but the version of the Galileo board with Windows installed is only available when distributed through Microsoft. The preview Windows image running on the Galileo for IoT toolkit is a custom non-commercial version of Windows based on Windows 8. Microsoft will ultimately make the OS available for anyone who buys the Galileo board, though.

Microsoft hasn’t just stripped down Windows and dumped it into an image you can run on a Galileo. They’ve been making improvements in Windows to better support the kind of things embedded developers want to do. For example, Microsoft’s Lightning functionality is a re-architecture of Windows to make GPIO operations much faster.

The folks at Redmond sensibly see IoT devices as being a huge opportunity both in terms of selling the embedded solutions that power those IoT devices and to make sure the devices connect and pass their data back to a Windows Server on the back end – Microsoft is potentially able to pick up some market share in the emerging IoT sector not only in the “Thing” components, but in the “Internet” component as well.

The ultimate goal of such efforts is to take information collected from billions of devices and feed it into cloud services powered by Microsoft’s Azure cloud computing platform. This is part of Microsoft’s cloud-heavy strategy, with the company previously pushing Windows Embedded as an IoT platform and a gateway to the rest of the company’s information-management fabric, mainly based around their Azure cloud services.

Microsoft has long catered to commercial developers and manufacturers of embedded systems with the Windows Embedded Compact OS, which is used in a range of industrial devices, mobile handsets, health monitors, ATMs and other devices. Microsoft wants to make sure these manufacturers knows its embedded OS can also work for their IoT devices as well.

However Microsoft has stressed that Windows Embedded is not going away and is still an important part of its product range. Windows Embedded Compact is a fully featured OS which supports commercial devices, unlike the new developmental offerings, and it remains Microsoft’s only real-time operating system and is the Windows operating system with the broadest set of ports including ARM and x86 architectures.

In moving to an ARM7 architecture, there’s a wider range of supported operating systems that can run on the Raspberry Pi 2. The processor upgrade means that two new operating systems come into view: Ubuntu Linux and Windows 10. Microsoft has recently announced it will be offering a Windows 10 build for the newest revision of the Raspberry Pi platform later this year, as part of its IoT Developer Program.

Microsoft and the Raspberry Pi Foundation have been collaborating for the last six months on the joint project. With Windows in the mix this potentially opens up the Raspberry Pi to some Windows-centric developers who weren’t previously interested in creating applications for the device, as it would mean learning a new operating system or programming language.

Windows 10

With Windows comes all the development tools such as Visual Studio, libraries and languages such as C# to add to the many tools that can already run on the Raspberry Pi such as Scratch and Python. Microsoft aims to bring their OS, their development tools, services, and ecosystem to the Raspberry Pi community for free, with the intention that you can take Windows 10 applications that you can run on a Surface, a PC or a Windows Mobile phone and now be able to run it on a Raspberry Pi as well.

This offers a wider range of hardware and software development possibilities for any new or existing IoT-enabled product, and here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisMicrosoft and the IoT