All posts tagged: LX Group

Marvell’s Wi-Fi Microcontroller Platform is a highly cost-effective, flexible and easy-to-use hardware and software platform built around a combination of Marvell’s high-performance 88MC200 ARM Cortex-M3 microcontroller and Marvell’s Avastar series of low-power 802.11n Wi-Fi system-on-chip radio devices.

With these new Wi-Fi Microcontroller Platform products, Marvell aims to make it easy for Internet-of-Things developers and product designers to build a new generation of connected devices that can interact seamlessly with mobile clients and cloud applications, delivering a broad range of IoT experiences and services to consumers in areas such as smart energy management, home automation and consumer electronics.

On the software side, this platform is powered by Marvell’s proven, field-tested EZ-Connect Software Development Kit, which simplifies software development and enables OEMs to focus on delivering IoT applications and services to their customers in a way that focuses on their own application-specific added value, without devoting lots of time and money to the low-level Wi-Fi software and firmware development.

Marvell has recently announced that they are the industry’s first silicon vendor to develop a fully supported SDK for Apple’s HomeKit framework – a framework in Apple iOS 8 for communicating with and controlling networked home automation devices and IoT appliances in the home.

This SDK, which is based around Marvell’s Wi-Fi Microcontroller Platform, the 88MC200 microcontroller, the 88W8801 Wi-Fi system-on-chip, and the EZ-Connect software platform, has received Apple’s stamp of approval as a HomeKit SDK and this is the first combined chipset and SDK platform on the market to offer full HomeKit support to hardware and device manufacturers looking to integrate their products into the HomeKit ecosystem.

Marvell’s HomeKit-ready silicon platform and SDK are already being used by several device manufacturers, paving the way for the first third-party HomeKit appliances to be bought to market.

This SDK is built on top of Marvell’s EZ-Connect SDK, simplifying the development of HomeKit-compatible products. Appliance manufacturers using Marvell’s SDK for HomeKit benefit from the complete, supported reference implementation of the HomeKit framework that this SDK provides, and they’re able to save months of development effort – instead focusing their efforts on innovative product features and great user-facing experiences.

Marvell’s Wi-Fi platform already powers many consumer IoT products on the market, and has been adopted by many industry leaders developing IoT products in sectors such as home appliances, lighting, home automation, toys, wearable computing and more. Mattel’s interactive Internet-connected Hello Barbie doll is one such example of an innovative IoT product already on the market which is powered by Marvell’s Wi-Fi platform and EZ-Connect technology.

The system is powered by Marvell’s 88MC200 microcontroller – the host microcontroller component of the Wi-Fi Microcontroller Platform. This is based on a 32-bit ARM Cortex-M3 core, with a CPU clock up to 200 MHz, 512 kB of SRAM memory, 8 MB of on-chip serial flash memory, and a rich set of I/O interfaces that offer high performance, low power consumption, and flexible connectivity to a range of peripheral devices.

amazon2

All of Marvell’s 802.11n Wi-Fi radio system-on-chip devices are based around an additional, separate power-efficient ARM core, and the firmware in this chip takes care of most of the handling of the Wi-Fi protocol, relieving the 88MC200 host microcontroller’s resources so that this processor can be used for application software and higher-layer networking.

This family of Avastar Wi-Fi radio chipsets have a market-leading architecture and RF performance, delivering reliable Wi-Fi network connectivity with low power consumption.

Four different wireless system-on-chip devices in this family are supported by the Marvell Wi-Fi Microcontroller Platform, including the 88W8801 single-band 2.4GHz device, the 88W8782 device which supports dual-band Wi-Fi networking, the 88W8787 which supports Bluetooth 3.0 connectivity as well as dual-band Wi-Fi, and the 88W8777 device which combines both Wi-Fi and Bluetooth 4.0 wireless connectivity into a single chip.

The Avastar 88W8777 system-on-chip is a particularly powerful and useful device well suited to IoT applications such as gateway devices, with support for both Bluetooth 4.0 and Wi-Fi connectivity in a single device.

As well as 802.11b/g/n Wi-Fi, this chipset incorporates the Bluetooth 4.0 standard and provides Bluetooth Smart-ready operation for classic Bluetooth devices and profiles as well as Bluetooth Low Energy devices. The Wi-Fi and Bluetooth radios can share a single antenna for the lowest cost implementation, or the two radios can operate on separate antennas for maximum performance and throughput.

This new system from Marvell offers a pathway into the Apple HomeKit environment, along with a base for Internet of Things product applications. However there are many options – and choosing the right plaform from a myriad of options can be a challenge. Instead, turn to the LX Group to solve your problems.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisHome automation with Apple HomeKit and Marvell’s Wi-Fi Microcontroller Platform

The emerging Narrowband IoT (NB-IoT) standard is a wireless technology designed especially for enabling cellular connectivity to Internet-of-Things devices, and is designed to combine long-range mobile connectivity with compatibility with existing LTE mobile network infrastructure and low power consumption for sensors or other long-lived devices.

As the NB-IoT standard is specifically aimed at enabling cellular low-power, wide-area (LPWA) wireless networks, targeted at machine-to-machine and IoT applications such as environmental and agricultural monitoring and the metering and automated reading of utilities such as water and power meters.

Furthermore, NB-IoT aims to provide reliable, wide-area network coverage, low power consumption, and strong scalability with support for very large numbers of devices on the network. This interesting new standard has been under active development during the last two years by several major players in the telecoms and networks industry – including Qualcomm, Huawei and Vodafone.

Vodafone believes the emerging NB-IoT standard will be the “killer” technology in the LPWA wireless IoT race, beating alternative technologies such as SigFox and LoRa. Vodafone is one of the key players in the NB-IoT forum, an industry association established last year to advance the development of narrowband IoT technology.

NB-IoT is one of several wireless technologies that aim to overcome the power and therefore transmission range limitations of alternative wireless networking technologies for LPWA Internet-of-Things applications. NB-IoT is a licensed-spectrum technology, unlike alternatives such as SigFox and LoRa which rely on unlicensed, or class-licensed, RF spectrum.

Although the use of unlicensed spectrum means that other LPWA technologies do not require a specific spectrum allocation and therefore are cheaper and easier for service providers to deploy, the limited bandwidth, relatively high congestion and limited transmission power in these radio bands limits the range and performance of the network.

With more and more wireless electronic devices in use everywhere, congestion in the unlicensed ISM radio bands is only going to get even worse in the future, NB-IoT hopes to overcome these limitations, in part by using licensed spectrum allocations like the rest of the mobile network.

The next generation of wide-area wireless IoT is a competitive field, with LoRa representing a more “open” system using unlicensed (but relatively congested) radio spectrum, and so far this has attracted support from many telecommunications service providers and operators including French operators Orange and Bouygues Telecom.

SigFox is also continually growing, with claims that they are presently deploying or operating networks in 17 countries. NB-IoT is still lagging slightly behind in this regard, with no widespread commercial deployment yet.

Vodafone has chosen to throw its weight behind NB-IoT instead of the competing technologies, however. Vodafone, in partnership with Chinese equipment supplier Huawei Technologies, which is another major NB-IoT backer, has recently opened a dedicated lab for NB-IoT development at its Newbury, UK headquarters.

NB-IoT Forum members, and other developers and organisations looking to use the NB-IoT standard to support commercial services, will now be able to test their applications at Vodafone’s new facility.

And with the backing of Vodafone, Huawei and other major industry players – NB-IoT is now in the process of being adopted as an official standard within the 3G Partnership Project (3GPP), with the expectation that it will be finalised and included in LTE release 13 later this year.

There have been some delays in this process, however, and there have been suggestions that NB-IoT will not be finalised in time for Release 13, instead slipping to Release 14 at some point in the future.

This has the potential to be a significant setback for the nascent technology, slowing down its widespread acceptance industry-wide, as well as allowing extra time for competing LPWA technologies such as LoRa and SigFox to continue to grow, with more deployments, bigger networks, and greater provider and end-user familiarity with these technologies.

One of the factors behind Vodafone’s support for NB-IoT is its strong cost-effectiveness for providers who have already built and operated modern mobile networks. Vodafone claims that 80 to 90 percent of their currently deployed base stations use Huawei’s SingleRAN technology for their Radio Access Network (RAN).

SingleRAN technology uses software-defined radio to allow a single network to support multiple different mobile telecommunications standards without hardware replacements, making it cheaper and easier to keep up with new developments in mobile communications standards.ericsson1

The easy integration of NB-IoT into the existing LTE mobile ecosystem, and its compatibility with LTE network infrastructure without new hardware deployments, are features that make it particularly attractive to established providers in the mobile communications sector.

For mobile network operators that maintain older base stations that have not yet been upgraded to LTE, however, moving to networks that can support NB-IoT may be a more expensive and slow process.

Nevertheless, NB-IoT is coming and this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisNarrowband IoT – enabling M2M connectivity with existing LTE networks

Intel’s Internet-of-Things gateway solutions and gateway development kits offer business IoT users a valuable solution for enabling IoT connectivity with existing industrial equipment or other legacy systems.

These gateway solutions are the result of a collaboration between Intel, McAfee and Wind River, aiming to provide IoT developers with pre-integrated and pre-validated hardware and software building blocks for gateways in IoT networks.

Intel’s gateway ecosystem provides hardware and software components that enable security, manageability and connectivity in your IoT deployment – along with ease-of-use. The technology supports a wide range of operating systems and hardware options to provide developers with choice and flexibility, making it easier for businesses to integrate with new or existing sensors, cloud partners and management solutions.

The incorporation of McAfee Embedded Control security technologies into Intel’s platform integrates the hardware-based security of Intel processors with operating system and application software security, keeping your data secure from the network edge to the cloud.

These gateways can connect legacy systems with the network, enabling seamless and secure data flow between edge devices and cloud computing or other Internet-based IoT services. Employing gateways to connect legacy hardware (without native Internet connectivity) to IoT networks enables businesses to unlock the value of big data and analytics from IoT-connected industrial machines and equipment without having to invest in replacing or upgrading this plant.

Intel’s IoT Platform, including gateways, makes it easier to manage your end-to-end IoT solution, and to enable analytics and secure performance to turn data at the network edge into action and business intelligence, delivering real commercial value.

Enterprise IoT solutions based on Intel’s powerful IoT Gateway Technology provide leading performance and security, enabling near-real-time analysis and tighter, more efficient process controls.

Furthermore, Intel’s hardware partners manufacture many different gateways compatible with the Intel IoT platform – with these designs covering a range of different industry verticals for industrial IoT users.

For example, if you’re working on an automotive application, you may look at one of several choices from Intel’s partners that specialise in IoT gateway hardware for transportation or automotive use.

Intel gateways are available with a range of processors, from single-core up to quad-core options. Generally the more powerful multi-core platforms feature increased RAM and flash storage capacity. The operating system and software ecosystem is also important to consider, since capitalising on the multicore processor requires appropriate programming to deliver the best performance.

The purpose of a gateway is to connect many sensors and devices together with different interfaces and aggregate their data and communications to the IoT network at a single point. This means that the I/O hardware available on the gateway is another important factor when choosing the right gateway for your application, to ensure you can connect with your sensors and devices.

Intel IoT Gateway Technology can efficiently aggregate and filter data at the network edge, allowing businesses to analyse and act upon information closer to its source, and in near real time. To deliver the most transformative business value, gateways need to be intelligent and have sufficient processing power to enable filtering, aggregation and end-to-end analytics on large volumes of data.

Processing and filtering data and performing some analytics on the gateway processor, close to the network edge, also reduces the amount of data that needs to be transmitted, reducing bandwidth costs. All these features help enable business users to realise the greatest possible value from the IoT.

Intel IoT gateways support a range of different interfaces, including Bluetooth, 802.15.4/ZigBee or 6LoWPAN, CAN bus, ModBus and many more. The choice of hardware I/O interfaces is particularly important where the goal is to interface legacy equipment – which may interface over RS-485, ModBus, CAN, industrial Ethernet, ZigBee or other protocols – to the IoT network.

The flexibility of an IoT gateway is particularly valuable in this kind of application, allowing existing machinery and legacy systems to be connected to IoT analytics and cloud computing at a relatively low cost.

amazon2

Intel’s IoT Gateway Platform supports a range of different operating systems, including Windows 10 IoT and Snappy Ubuntu Core, so users who prefer either Windows or open-source Linux ecosystems are accommodated.

Wind River Linux 7 is also supported, including integration with Wind River’s other IoT tools and development tools such as Wind River Workbench, Helix Device Cloud and Helix App Cloud. It’s available preconfigured with Wind River Helix Device Cloud agent, providing cloud connectivity to facilitate device configuration, file transfers, data capture, and a rules engine for analytics.

To support this hardware and software ecosystem for the IoT in an easy-to-use and accessible way, Intel provides in-depth documentation, tools and resources. With built-in tutorials in the Wind River Intelligent Device Platform, you can quickly begin working with tools like Wind River’s Helix App Cloud.

To help with ease of administration and device management, Intel provides MeshCentral, a free and open-source solution for managing all types of devices across a wide variety of operating systems and processor types.

This solution is secure, customisable and easy to install, and it allows users to maintain ownership and control of all their own data. The MeshCentral device management system makes it easier to get legacy devices connected to the cloud, and it is fully interoperable with Intel’s gateway technology and the rest of their IoT ecosystem, making it easy to manage your Intel IoT gateways and other devices.

As an example of Intel’s IoT Gateway Technology at work in a real-world IoT deployment, Intel is working with Cleantech San Diego and other organisations to demonstrate how solutions using Intel’s technology can help optimise water and energy usage in commercial buildings.

At the Port of San Diego, the Intel IoT Gateway-based solution monitors HVAC power, lighting and energy use, resulting in cost savings and reduced greenhouse gas emissions.

As you can imagine, there are many options to consider in the hardware, software and implementation areas of your next Internet of Things project.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisNew Intelligent Gateway Internet of Things Solutions from Intel

Here at the LX Group we investigate many Internet of Things platforms for research and fit-for-purpose testing, and one of these is the new hardware and software ecosystem has been announced by the Arduino team in Italy.

They have recently released and announced a number of new products and services specifically aimed at enabling cloud-connected wireless solutions and other Internet-of-Things applications, including the MKR1000 develpoment board, their IoT Development Environment, and a companion Community Project Platform.

Their new MKR1000 is a tiny, feature-packed board based on Atmel’s ATSAMW25 module, which incorporates a IEEE 802.11 radio certified by the Wi-Fi Alliance along with a low-power ARM Cortex-M0+ 32-bit microcontroller.

With a much smaller form-factor than traditional Arduino boards, along with 32-bit ARM performance and built-in wireless networking, the MKR1000 offers a LiPo battery charging circuit and on-board cryptographic support, making it an Internet-connected platform that is compact, powerful, secure and battery-ready – ideally suited for the burgeoning Internet-of-Things market.

To promote the new board, Arduino will team up with Microsoft to give away 1000 units to makers who submit project ideas based on the platform. The new board “offers the ideal solution for Makers seeking to add Wi-Fi connectivity with minimal previous experience in networking”, according to the team.

Arduino has also recently announced their new project and tutorial platform, the Arduino Project Hub, as the place to go for Arduino users to host and share their projects and experiences.

As with the the recent “World’s Largest Arduino Maker Challenge” competition alongside Microsoft, the Arduino Project Hub has been developed by Arduino in partnership with hackster.io, and this official partnership between Arduino and another commercial entity – telling the community that this is “the place” where your Arduino projects are supposed to be hosted and shown off – is an interesting move for the Arduino company and the Arduino community.

It is not just the new networking-oriented Arduino MKR1000 hardware platform that has made Arduino’s push towards the Internet of Things obvious in their recent announcements. Among the new Web properties that Arduino has announced is Arduino IoT, hosting a collection of Arduino-oriented tutorials and guidance for people who want to get started with Internet-of-Things development.

With this, Arduino aims to create a new platform to “make building IoT devices as easy as blinking a LED”, providing a range of inspirational examples and tutorials based on the Arduino and Genuino MKR1000 platform, ranging from a simple Telegram Bot to a more complex smart thermostat.

Another key part of Arduino’s push towards IoT and connected applications is the new Arduino Cloud environment. Arduino Cloud is designed around the new MKR1000 board, although it also supports the more modern of the official Arduino Wi-Fi Shields (which like the MKR1000 has on-board cryptographic support).

Arduino Cloud allows you to connect your Arduino directly to Web services and other Internet- or cloud-based applications using MQTT as the messaging protocol. It can also connect messages across the Internet from one Arduino device to another.

At the moment the Arduino Cloud environment is in an early alpha release, and it is claimed to currently have “one percent of the features” that will be implemented in the final product. Although it is still in development today, it will be interesting to see how having cloud capabilities natively included in the official Arduino ecosystem will potentially affect similar, competing environments such as Particle Cloud.

We’re already seeing a consolidation of board support around the Arduino development environment, with many different kinds of hardware platforms from different manufacturers all being unified by common compatibility with the Arduino IDE, especially with the more advanced Board Manager functionality that is included in the current revision of the Arduino IDE.

Now the Arduino Cloud platform could potentially bring this same unification to the cloud and Internet applications side of the IoT, with a common cloud platform that is compatible with all those different hardware products.

mkr2

The Arduino Create platform is another exciting new addition to the Arduino ecosystem that has recently been announced – a Web-based development environment for Arduino projects. This new environment is still in private beta, with the development team refining the Web-based code editor based on feedback from the beta cohort, but we’re told that it is almost ready.

This platform promises to replace the familiar Arduino IDE – which inherits many legacy elements, both good and bad, from Wiring on which is is based – with a modern, flexible, Web-based toolchain. Using a browser plugin, the new environment will allow you to write code and upload sketches to any Arduino device connected to your computer, directly from the Web browser.

It will also store your sketches and allow you to connect to services in the cloud. Other attempts at cloud-based development environments have been unpopular in some cases, since users are sceptical of having their files and work potentially disappear with a defunct company or become suddenly locked up behind a paid subscription model in the future, without users having local possession of their own files.

However, given Arduino’s long-standing commitment to open-source free software for their development tools, these factors are unlikely to be a concern. Nevertheless, this is not a total recommendation – as each client has different needs that may require open or closed hardware and software solutions.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisArduino team releases new Internet of Things Platform

Creating Internet-of-Things nodes and related hardware can be a challenge, however with new hardware such as Atmel’s latest SmartConnect SAMW25 Wi-Fi module – you get a low-power, pre-certified system-on-chip solution that is aimed at the needs of embedded computing, connected appliances and Internet-of-Things applications.

This highly integrated module offers an ideal solution for designers looking to easily integrate wireless connectivity into their products using a Wi-Fi platform with FCC precertification for the module.

The SAMW25 module is based on Atmel’s industry-leading WINC1500 Wi-Fi chipset combined with a 32-bit Atmel SMART SAM D21 microcontroller on the application processor side. This provides an all-in-one- solution that opens the door to wireless LAN connectivity for a wide range of battery-powered Internet-of-Things devices and applications that require an application processor with integrated Wi-Fi connectivity, without compromising on cost or power consumption.

With a compact 34 x 15mm footprint, the module is competitive with other Wi-Fi modules on the market in terms of size, RF performance and cost – but according to Atmel this platform is particularly strong in terms of its power consumption and power-saving modes compared to similar Wi-Fi modules on the market.

The WINC1500 Wi-Fi device includes everything you need at the physical layer for 2.4GHz IEEE 802.11 b/g/n support at up to 72 Mbps throughput, such as an integrated power amplifier, transmit-receive switch, and advanced signal processing that provides superior sensitivity and range.

The rest of the Wi-Fi stack includes TCP/IP on board, WEP and WPA/WPA2 encryption support, and support for Wi-Fi Direct, Soft-AP and station modes. The WINC1500 MAC layer is designed to minimise power consumption while also providing high data throughput.

The WINC1500 includes its own, independent 32-bit processor dedicated to the Wi-Fi networking functions. This processor provides many of the MAC functions, for example association, authentication, radio power management, security key management and frame aggregation or de-aggregation. This processor also provides flexibility for various modes of Wi-Fi operation, such as access point and station modes.

On the host microcontroller side, The SAM D21 microcontroller core runs at up to 48MHz, with 256kb embedded Flash and 32kB SRAM. This system-on-chip features convenient over-the-air Wi-Fi firmware upgrade capability, and SPI, UART and I2C interfaces.

The microcontroller is based on the ARM Cortex-M0+, building on ARM’s decades of innovation and experience in powerful yet energy-efficient microcontroller architecture.

This general-purpose microcontroller is ideal for many low-power, cost-sensitive industrial and consumer applications, running the application in one place integrated into the module alongside the Wi-Fi radio. In most cases, this system can run an Internet-connected application completely self-contained with no other microcontroller needed in the system.

A TCP/IP stack is provided onboard to handle the networking, along with DHCP and DNS network protocols and TLS (Transport-Layer Security), SSL and HTTPS support, enabling strong security in IoT networking applications. Atmel’s Wireless Simple Configuration (WSC) is also supported, making it easy to provision new devices on the network with their passwords and the like.

The microcontroller also provides a DMA and event-handling system and a full-speed USB peripheral device plus USB host. Six flexible serial communications modules are provided, along with a 12-bit ADC, 10-bit DAC and a hardware touch-sensing engine.

This rich and flexible set of peripherals, combined with the energy-efficient application processor and integrated Wi-Fi radio, make this platform an ideal all-in-one solution for a range of home automation, consumer, utility metering, industrial sensing and Internet-of-Things applications.

All these features are accessible via the Atmel Studio 6 development environment, making it easy to use the SAMW25 module and easy to get started developing software for your Wi-Fi connected products and IoT applications. You don’t need to have any previous experience working with the TCP/IP stack, 802.11 networks or RF hardware design.

download

Atmel also offers the Atmel SAMW25 Xplained Pro evaluation kit, their wireless hardware platform to help you evaluate and develop for the ATSAMW25 Wi-Fi system-on-chip module. This kit is supported by the Atmel Studio IDE, and it provides easy access to all the features of this device, explaining how to integrate this module into your custom design.

Additional peripherals are offered in the kit, extending the features of the module and making it easier to develop your custom designs – for example a USB serial port and Serial Wire Debug support for programming and run-time debugging of your software in the onboard SAM D21 microcontroller. No other programmers or external tools are required to program or debug the device, making it easy to get up and running quickly.

And this is where the LX Group us ready to work with you. We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisRapid Internet of Things Node development with Atmel SmartConnect SAMW25

In the past few months the number of new announcements of Internet-of-Things platforms and services is outstanding – and the latest to come across our view is Autodesk’s new SeeControl IoT service – a cloud service for enterprise-level Internet-of-Things applications, aiming to help manufacturers and industrial users to connect, analyse and manage their products and the data that these systems generate.

SeeControl virtualises things such as machines, links them with reporting devices, and provides analytics to unlock the data potential trapped inside industrial devices. SeeControl services help manufacturers incorporate sensors into their products, manage them remotely, and collect the big data they provide.

With smart, connected machines enabled by SeeControl, manufacturers can offer higher service levels, reduce asset downtime and lower maintenance and material costs.

SeeControl services provide everything businesses need to achieve these IoT benefits in one place, and to get up and running quickly. SeeControl is an open cloud platform that is interoperable with a huge range of devices, as well as other cloud services, back-end systems and mobile applications – helping to deliver interconnected IoT services with strong user experiences. SeeControl offers a drag-and-drop approach to industrial IoT that enables users to innovate quickly, without advanced coding expertise.

The platform runs in Autodesk’s cloud infrastructure as a white-label subscription service, and the use of cloud computing for the SeeControl platform means that it can interconnect and scale to any desired scale with ease. SeeControl is designed to be an invisible IoT engine that provides your business with a rich toolset as a white-label solution. On top of this, you can add your own corporate branding, identity, look and feel.

The SeeControl platform provides templates for many example solutions, allowing you to quickly get used to the easy-to-use visual programming tools and edit these templates to start building your unique solutions.

The platform provides a large library of device adapters which cover a wide range of protocols and different products, helping to ensure that your solutions are future-proof and can be connected with different hardware devices and different products on the market into the future.

Using analytics and insight provided by SeeControl, you can provide customers with a uniquely improved level of service, reduce costs and run your business more efficiently. Inventory levels can be maintained more efficiently, for example.

Predictive maintenance enables parts to be ordered automatically before they’re needed, and products and machinery can be kept running at peak levels. Potential failure can be identified before it happens and maintenance downtime can be scheduled so that it will be least disruptive.

Performance of systems can be monitored, so you can see how your product performs in the real world and use live data to make product improvements and optimise future development. You can use SeeControl analytics to provide customers with real-time understanding of their products, so you can participate in the full product lifecycle and increase value to the customer – as well as bringing in an additional revenue stream through ongoing product-as-a-service solutions.

End customers may be able to predict when maintenance may be required ahead of time, as well as being able to manage spare parts, consumables, maintenance and warranty activities all in one place, in one seamless experience. If service workflows need to involve third parties, you can easily let them collaborate on their job in their portion of the system with access to this valuable data but with access only to the data that is relevant for service, maintenance or supplier needs, maintaining strong overall security.

Unlike other IoT platforms, which are device-centric and provide raw data collection and simple rule frameworks, SeeControl starts by building virtual software-based models that represent all your physical devices, machines and products, with analytics integrated into these models. SeeControl provides a universal mobile app that allows you to quickly get started with mobile connectivity to the service.

This app is customisable, and you also have the option of using the SeeControl API to build a mobile app from scratch to best meet your needs. SeeControl provides REST and SOAP APIs for data brokerage and transferring device data from legacy systems or complementary systems which will be used alongside SeeControl. For example, these APIs can be used to post device data to a Web server via SeeControl from a SeeControl-enabled system or device.

seecontrol1As well as using the APIs to connect with SeeControl, you can also use the extensive libraries in the SeeControl platform. These libraries offer extensive support of open standards and vendor-specific standards for a wide range of embedded devices, sensors and actuators, communication and networking devices and gateways. For example, existing format and protocol adapters are provided for CoAP, MQTT and Modbus, to name just a few.

If there is no out-of-the-box support for the technology that you want to connect with, you can write your own device adapter so SeeControl can support your device, using the protocol, data format and language of your choice. And when it comes to hardware, software and support for a SeeControl or other Internet-of-Things platform, the LX Group us ready to work wiwth you.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisEnterprise-level Internet-of-Things with Autodesk SeeControl

The latest version of the popular ZigBee wireless mesh networking standard, ZigBee 3.0, is an attempt to combine the various different components and device profiles within the ZigBee standard into a single, unified specification.

This new ZigBee 3.0 standard aims to provide seamless interoperability across the greatest possible selection of smart Internet-of-Things devices employing ZigBee wireless connectivity – giving consumers and business users access to ZigBee-enabled products and services that will work together seamlessly to meet their needs.

It delivers all the familiar capabilities you expect from ZigBee, while unifying most of the different ZigBee application profiles which are presently in use, such as ZigBee Home Automation and ZigBee Light Link, into a single platform.

ZigBee 3.0 defines more than 130 different specific devices and a wide range of device types, including home automation, lighting, energy management, smart appliances, security, sensors, and healthcare monitoring devices. All the device types, profiles, commands and functionality that are currently defined in the ZigBee PRO standard (which ZigBee 3.0 is based on) are available in ZigBee 3.0.

The initial release of ZigBee 3.0 unifies together the ZigBee Home Automation, ZigBee Light Link, ZigBee Building Automation, ZigBee Retail Services, ZigBee Health Care and ZigBee Telecommunications Services application profiles into the single ZigBee 3.0 specification.

All the application-level functionality of the ZigBee Smart Energy profile is already included in ZigBee 3.0. However, ZigBee Smart Energy includes advanced security features such as elliptic curve cryptography, specifically implemented for use by electricity utilities to enable high levels of security in smart grid applications.

For this reason, the ZigBee Smart Energy application profile is not unified into ZigBee 3.0 at this time. However, the ZigBee Alliance is working to integrate this level of security as an optional feature of ZigBee 3.0, across all application types, and this will allow merging the Smart Energy profile into the ZigBee 3.0 standard.

ZigBee 3.0 builds on the existing ZigBee standard but unifies the market-specific ZigBee application profiles to allow all devices to be wirelessly connected to the same network, irrespective of their market designation and function. The unification of these profiles means that a wide variety of smart devices that previously have used any one of those profiles can now interoperate seamlessly with any other ZigBee device – with the potential to lead to new, innovative IoT applications and solutions.

Home automation and Internet-of-Things products presently on the market have typically targeted a single application area, such as smart lighting using the ZigBee Light Link profile, for example. But as the number of smart, connected IoT devices grows, a typical home or office may obtain more connected devices, and different types of connected devices. But using current ZigBee application profiles, different types of devices cannot always communicate with each other.

A ZigBee Light Link device cannot directly communicate with a ZigBee Home Automation device, and as the number of devices being deployed grows – this just doesn’t make sense in terms of building useful IoT experiences that make sense for consumers.

In the past, there have been separate components to the ZigBee standard because the ZigBee Alliance has focused on optimising their standards for individual markets based on limitations of hardware, such as processor speed and memory size, and the particular requirements of individual markets. Improvements in hardware, like high-performance, low-cost systems-on-chip, combined with the increasing desire to connect a wider variety of devices across market sectors, led the ZigBee Alliance to create the ZigBee 3.0 specification.

The ZigBee Certified program is another crucial part of the ZigBee Alliance’s standards development process. The program allows manufacturers to deliver a variety of products to all kinds of customers with applications that can benefit from ZigBee connectivity, and customers can have confidence in products that “just work”.

The ZigBee Certified process ensures that products built using ZigBee 3.0 function as expected and products from different manufacturers are all able to interoperate with each other. For example, existing ZigBee Certified products based on the ZigBee Home Automation 1.2 or ZigBee Light Link 1.0 profiles are already certified as being interoperable with ZigBee 3.0.

If you’re currently developing a product based on ZigBee Home Automation or ZigBee Light Link, your product will be forward compatible with ZigBee 3.0, so there’s no need to delay your product development while the ZigBee 3.0 specification matures. Your product can still be ZigBee Certified using the older specifications, and this means you’re fully ZigBee 3.0 ready.

Devices that use ZigBee application profiles other than these may need to have a firmware update for compatibility with ZigBee 3.0. The IEEE 802.15.4 standard that defines the physical layer and MAC layer of the network stack remains unchanged in ZigBee 3.0, since ZigBee only defines the higher layers of the network. This means that the radio hardware in your device does not need to be changed or upgraded to move up to ZigBee 3.0 compatibility.

Zigbee v3

Vendors that have existing products on the market that employ ZigBee profiles such as ZigBee Home Automation are able to continue to release products using these separate application profiles, but the ZigBee Alliance believes most manufacturers will choose to move towards ZigBee 3.0 and the interoperability benefits that it offers.

Here at the LX Group we have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisZigbee version 3.0 – a new foundation for the Internet of Things

Continuing on from our previous article explaining the LoRa Alliance, we’re now excited about the final LoRaWAN revision 1.0 specification that has recently been formally released to the public by the LoRa Alliance – and is available to download freely from their website. This release makes LoRaWAN the most comprehensive and the most widely adopted Low Power Wide Area Network (LPWAN) specification presently available for open use.

The LoRaWAN specification is the first public and open carrier-grade LPWAN protocol standard, aimed at wide-area networks of sensors, base stations and servers, or any wide-area Internet-of-Things or M2M networking applications.

This specification has been created by the LoRa Alliance, an open, non-profit consortium led by IBM, Actility, Microchip and Semtech, who believe that the Internet-of-Things era is already well and truly established, who have a mission to standardise LPWAN deployments around the world that enable wide-area connectivity for IoT and machine-to-machine, smart city and industrial telemetry applications.

As a part of IBM’s support of the LoRa Alliance, IBM has released their “LoRaWAN in C” reference implementation of the specification as open source under the Eclipse Public License.

The LoRa Alliance and its members, which include many industry leaders in the mobile network and IoT sectors, see the release of this standard as a significant step towards international standardisation and interoperability in the LPWAN space.

This will stimulate the deployment of network infrastructure and certified sensor hardware products from many manufacturers and vendors around the world – all using a unified and interoperable standard. According to the Alliance, they are delighted to have achieved this milestone of opening the LoRaWAN specification to the general public.

The members of the LoRa Alliance have collaborated, sharing their knowledge and experience, to build and rigorously test the LoRaWAN R1.0 release specification to ensure its best possible readiness for large-scale deployments across the entire spectrum of different LPWAN use cases.

The LoRa Alliance hopes that this careful implementation of the LoRaWAN open standard will drive the global success of LPWAN technology, particularly in Internet-of-Things and M2M ecosystems, and it will help to guarantee interoperability around one open, carrier-grade, global specification.

The Alliance is a strong believer in open standards, rather than proprietary, closed specifications, which enable cooperation between the key stakeholders in the LPWAN and Internet-of-Things sectors, including mobile network operators, sensor and connected device manufacturers, and end users as well. They believe that open ecosystems are critical to encourage the widespread adoption of low-cost, long-range machine-to-machine connectivity.

Having industry leaders, vendors, service providers and users involved in the development and improvement of the standard has ensured that all of their shared knowledge and experiences are included and addressed most effectively by the specification.

The aim is ultimately that LoRaWAN will be the best placed standard to benefit the LoRa community, and the LPWAN IoT industry more generally.

LoRaWAN is an ideal framework for LPWAN applications that require very strong energy efficiency, providing telecom-grade connectivity and managed, secure, bidirectional communications as well as location-enabled services, all with hardware that can run from a single coin cell battery.

Furthermore, LoRaWAN is optimised for strong energy efficiency and support for large networks of up to millions of devices in regional, national or even international wide-area networks. It is specifically aimed at supporting low-cost, secure, bidirectional wireless communications with portable devices across wide areas while keeping both the battery costs and base station infrastructure costs to a minimum.

With the wide-area capabilities of the LoRaWAN specification, entire cities or countries can be connected using a relatively small number of base stations, meaning that the up-front rollout of thousands of base station nodes is not needed as would be required with traditional mesh networks. This makes wide-area IoT solutions much more accessible, with reduced infrastructure costs.

LoRaWAN technology can be used alongside the more common cellular M2M technology in a complementary way – although cellular networks require shorter distances to each base station and have higher power requirements, they can also offer more bandwidth for those applications and devices in the network where this bandwidth is required.lora2

The LoRa Alliance Certified Product program ensures that any LoRa-branded devices on the market are compliant with the standard, are interoperable, and meet regulatory requirements such as the radio frequencies being used, giving end users without technical expertise confidence in the products that they buy.

The LoRAWAN specification aims to make it easy to develop LPWAN services and applications, and to address the challenges of deploying and operating a LPWA network across a large geographic area – even as large as a whole country.

Its features are specifically aimed at supporting low-cost, secure, mobile and bidirectional communication for wireless IoT applications, with strong energy efficiency and a minimal need for base station deployments.

Here at the LX Group we have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLoRaWAN – the first public and open LPWAN standard

The LoRa Alliance is an open, non-profit, international alliance of companies and industry stakeholders that share the mission of trying to standardise the deployment of the Low-Power Wide Area Networks (LPWANs) – that are increasingly being deployed around the world to enable Internet-of-Things technology and machine-to-machine communications, “smart cities”, and industrial applications.

Members of the LoRa alliance collaborate with the aim of driving the global success of their LoRaWAN protocol, by sharing knowledge and experience with a view towards interoperability between operators, using a single open global standard for LPWAN connectivity. The Alliance – which is led by IBM, Actility, Semtech and Microchip, formally released the open LoRaWAN R1.0 standard to the public earlier this year.

LoRaWAN is an LPWAN specification intended for wireless, battery-operated IoT “things” with wide-area network connectivity. Its features are specifically aimed at supporting low-cost, secure, mobile and bidirectional communication for wireless IoT applications, with strong energy efficiency and a minimal need for base station deployments.

A LoRa network is already being rolled out by Bouygues Telecom in France, in partnership with Sagemcom, with aims to cover most of the country by the first half of 2016. Some testing and evaluation is already underway with this country-scale LoRaWAN network, and tests are also being conducted locally in Sydney’s North Shore area by the NNN (National Narrowband Network) Company.

LoRaWAN is optimised for strong energy efficiency and support for large networks of up to millions of devices. At the physical layer, the RF hardware is optimised for high efficiency, with data links being maintained over long distances with very low power consumption.

As with some other LPWAN systems such as Taggle, the class-licensed sub-gigahertz ISM bands are used to provide this long-range connectivity – different frequencies depending on which country the technology is deployed in.

This long range and energy efficiency comes at the cost of data rate, though – this technology was never intended for high-bandwidth applications, but it is a perfect fit for lightweight applications such as telemetry from environmental sensors deployed in remote field applications.

LoRaWAN network architecture is typically laid out in a “star-of-stars” topology with multiple endpoints and multiple gateways. In this arrangement each gateway serves as a transparent bridge that relays messages between endpoint devices and a central back-end server. Gateways are connected to the back-end server via familiar IP networks while endpoint “things” use a single-hop lightweight wireless link back to one or more gateway devices.

Wireless communication between the endpoint devices and the gateways is performed in a spread-spectrum manner, employing different frequency channels and data rates. The selection of the data rate is a trade-off between the required transmission range and the acceptable time for the transmission of a message of given size, with typical LoRaWAN data rates ranging from 0.3 kbps to 50 kbps.

This may seem small, but it is sufficient for a lightweight, embedded sensor application that transmits small packets of sensor readings occasionally to the back-end server.

Because of the spread-spectrum approach, communications with different data rates do not interfere with each other, but instead what you have, basically, is a set of “virtual” channels for each transmission at a different data rate. In this manner, the capacity of each gateway is increased, and more endpoint devices are able to be supported by each gateway. This means that the infrastructure cost of rolling out a large-scale LoRaWAN network is reduced.

To maximise both battery life of the endpoint devices and the overall capacity of the network, the LoRaWAN network server is responsible for an adaptive data rate (ADR) scheme that dynamically manages the data rate and the RF power output for each individual endpoint node in the network.

The LoRaWAN standard defines three classes of endpoint nodes – one that allows a small downlink window after each upload, which means that devices don’t have to communicate a scheduled downlink window in cases where the amount of downlink data needed is minimal; or one that allows a scheduled downlink slot at a defined time; or one that listens for downlink messages at any time.

LoRaThe latter is more flexible, but because it requires the radio receiver to be kept online listening for new downlink messages all the time, this is the most power-inefficient mode compared to the former scenarios where the radio can be powered down. This is another way that the LoRaWAN protocol helps to maintain strong power efficiency in the endpoint devices.

The LoRa Alliance Certified Product program ensures that any LoRa-branded devices on the market are compliant with the standard, are interoperable, and meet regulatory requirements such as the radio frequencies being used. Only LoRa Alliance authorised test houses may perform testing for this program, and the relevant national conformity test reports are supplied by product designers, together with the LoRa Alliance conformity report, to the Alliance’s certification body before the “LoRa Certified Product” status is allowed.

This strict process gives consumers confidence in the LoRa Alliance and in consumer-facing products that carry their brand, meaning that consumers without a technical background can be confident that their products are interoperable, compliant with relevant radio regulations, and can be used in a predictable way alongside other devices and software tools that are built on top of the same open standards.

Here at the LX Group we have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisIntroduction to the LoRa Alliance

One of the greatest hindrances to a successful Internet-of-Things device is the amount of energy consumed and level of bandwidth required for a wireless solution. However, these challenges have been overcome and now your M2M and IoT-enabled devices with low-bandwidth requirements can take advantage of a brand new system that is ideal for the task – SigFox.

SigFox is a new wireless connectivity platform being deployed across many countries, whose aim is to provide low-power, wide-area network infrastructure across large areas, for connecting Internet-of-Things and Machine-to-Machine telemetry applications that have limited bandwidth needs.

By providing radio communications with embedded devices across a wide area, and without the relatively high cost of cellular telephone networks, SigFox aims to make it fairly easy to integrate their platform with your other software applications.

The SigFox network is highly scalable and built for a huge number of devices, offering a global wide-area cellular connectivity solution from customer’s devices right through to their software applications – with very strong energy efficiency. It has been estimated that over the next decade, 14% of the booming IoT market will be made up of connected objects using low-power, wide-area networks such as SigFox or LoRa.

The fundamentals of SigFox are this – separate antennas are deployed on towers across a wide geographic area, in a similar manner to a cellular network – and this new network receives and transmits data from IoT devices in the field, such as water meters or parking sensors.

Ultra-narrowband wireless technology allows very low transmission power levels to be used while still maintaining a robust radio link to the rest of the network. This means devices can run efficiently for a long time in power-constrained installations, for example in remote field devices which can’t easily have their batteries replaced.

SigFox networks are usually built with cells 30-50km apart in rural areas, however in urban areas where there is more potential for radio interference, as well as more obstructions – the distance between cells may be reduced to 10km or less. Between outdoor nodes with line-of-sight the range between connected nodes could be much larger, with line-of-sight link distances of potentially up to 1000 kilometres.

This long-range, wide-area coverage means that enormous areas, even whole countries, can practically be covered with a limited number of SigFox base stations – and this nation-scale connectivity is exactly what SigFox aims to achieve.

Any device within this radius of a SigFox base tower can be wirelessly connected to the SigFox IoT network, providing wireless connectivity essentially anywhere, with minimum infrastructure deployment, simplicity and low cost.

The overall SigFox network architecture has been designed to provide a scalable, high-capacity network, with high energy efficiency, while maintaining a simple star-shaped cellular network topology that is easy to roll out.

Furthermore, SigFox claims that each base station can handle communications with up to a million objects, with an overall system power consumption as small as a thousandth of that of a standard cellular network.

Power management with SigFox endpoint nodes is incredibly efficient – they can wake up whenever they need to send a message, send a quick transmission and then return to a low-power sleep state. This allows devices that periodically transmit sensor data over a network, for example, to achieve very good battery lifetimes – in one example case cited by SigFox, up to 20 years from a pair of AA batteries.

sigfox2Although the SigFox technology can’t accommodate heavy amounts of Internet data such as streaming media, it is well suited to carrying simple messages in Internet-of-Things and telemetry applications, employing lightweight transport protocols such as MQTT.

The SigFox network can carry up to 140 messages per object per day, or one message every 10 minutes, with a wireless throughput of up to 100 bits per second and a maximum message payload size of 12 bytes. SigFox employs ultra-narrowband radio communications in the ISM UHF bands, meaning that it can be deployed in most countries without device-specific radio spectrum licensing.

The specific frequency bands used for SigFox can vary according to the ISM spectrum allocations in different countries, with the 902 MHz band being used in the United States and the 868 MHz band used for most deployments in Europe. The SigFox ultra-narrow-band technology coexists well with other users of these frequencies, without collisions or capacity problems.

Thanks to SigFox’s aim to roll out their network to 60 countries over the next five years, with particular interest coming from the “smart grid” and energy management sector – we know this system will be a success. The SigFox network currently covers all of France (with 1200 base stations), Spain and the Netherlands, along with London, Manchester and several other UK cities.

However, this is not an international-only system – here in Australia we’re about to get started with SigFox, whose rollout will be announced this month. We predict a rapid take-up and look forward to working with future an existing customers to harness this exciting new technology.

Here at the LX Group we have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisSigFox – a Wide-area Network for connecting your Internet-of-Things Devices