All posts tagged: . analysis

GroveStreams is a powerful cloud platform that provides storage and analytics for the Internet of Things, providing Big Data analytics in the cloud and allowing you to capture, analyse and make decisions on data as it arrives. This essentially provides powerful decision-making capabilities to many users and devices and allows you to easily aggregate, visualise and analyse data arriving from many different sensors and data sources.

The included data-streaming analytics are designed to scale to meet your demand for data, so that your business or organisation can quickly react to changes in the data environment – and changes in the physical sensor environment – as those changes are happening. GroveStreams isn’t just built to allow you react to data, it’s also built to allow your devices to react accordingly by using the open, platform independent, GroveStreams API.

The proliferation of devices that generate data in wireless sensor networks, environmental sensing, home and building automation, and Internet-of-Things applications and systems increases every day, and GroveStreams offers a system that can effectively capture, analyse and react to these emerging Big Data sources in a timely manner, with cloud-based scalability and reliability.

GroveStreams is an open cloud-based platform that any organisation, user or device can take advantage of, with an open API and free accounts for low-traffic hobbyist, experimenter or evaluation users. The platform specialises in capturing, analysing and acting on large amounts of time-series data points and streams, with the ability to manage large numbers of different data streams for each organisation.

Each stream can store over 60 million data points or samples, meaning that a stream of sensor data collected once per second can be logged continuously for just under two years in a single continuous data stream.

The GroveStreams platform provides sample timing accurate to the millisecond, and support for many different data types such as integers and floating-point numbers with user-defined physical units, text strings, dates and times and geographic coordinates, along with actionable data analytics such as user-defined roll-ups of data over time, interval gap detection to allow you to monitor the quality and reliability of sensor data streams as they arrive, data streams that are derived from internal or external RSS feeds, calculations and basic statistical processing on data streams, and derived data streams that are derived from arithmetical or statistical operations on other streams of sensor data.

For example, a stream of temperature data in degrees Fahrenheit may be generated by taking another data stream which receives temperature measurements in degrees Celsius from a sensor and applying a mathematical transformation to this stream, or a stream of energy use data from an energy sensor might be multiplied by another stream containing real-time energy pricing information (cents per kilowatt-hour) derived from an RSS feed, allowing an accurate measurement of accumulated energy cost.

GroveStreams provides for the easy aggregation of large numbers of different data streams, and customisable drag-and-drop HTML dashboarding for flexible, customisable dashboarding and visualisation of your data streams, along with live charts and grids which can be embedded within external Web pages, allowing embedding of data displays within external web pages – although they are still served from the GroveStreams cloud infrastructure.

grovestream2

New components and streams can register themselves automatically and appear in existing dashboards and aggregation analytics as they upload their initial feed data, minimising the need for difficult configuration of new components and streams to connect them into existing dashboards or analytics.

All components and streams provide their own RSS feeds, and RSS feeds can be added to your custom dashboards for viewing within the dashboards. It is also possible to configure sensor-driven, data-driven event monitoring with customisable HTTP call, email or SMS notifications – in response to sensor readings and data values, or in response to time-series trends and statistics derived from your data.

GroveStreams also provides Maps functionality, allowing you to spatially map your data from networks of devices that are equipped with GPS or other capability for location awareness. Distances between devices, speeds, and locations can be tracked and mapped, as well as being subject to all the processing techniques applicable to other data streams. And by providing user role-based security, with public/private web UI settings, you can make your organisation accessible to only your users or also to anonymous guest users, with the ability to set guest access rights to control the way that public users work with your data.

Futhermore a RESTful API is provided with almost all the functionality of GroveStreams exposed out via the public API, including fine-grained API access security. Basic examples to get you started with the API are provided for use with Java, Python, and even for use with Ethernet-enabled Arduinos, allowing you to easily get started with cloud data connectivity from your sensors and physical devices.

A fully browser-based user interface is provided, entirely in HTML without plugins such as Flash, allowing flexible, convenient use of the browser interface across all mobile devices such as smartphones and tablets. GroveStreams can even be re-branded as your “own” application provided to your commercial customers, with your own look, feel and brand identity – while all the cloud infrastructure and hosting under the bonnet is handled by GroveStreams.

GroveStreams is free for small users. Large users will only be billed for what they use (the number of transactions, the number of streams, etc). Once a user’s account exceeds the free metric amounts, they will be required to register a credit card with their account. Billing metrics are constantly gathered and can be monitored in an organisation owner’s account page. For users who aren’t organisation owners, it’s free.

Anyone who needs to collect large amounts of time-series data, monitor it, analyse it and react to this data or data from other devices quickly could benefit from connectivity to the GroveStreams service. Whether you want to monitor one data stream from a single source or many more streams from many sources, GroveStreams is likely to be useful for many different users, including utilities, sensor/device driven organisations or businesses that would benefit from near-real-time sensor data collection and analytics in the cloud. With accounts provided completely free for small-scale users, GroveStreams is also an attractive and accessible platform for electronics hobbyists, open-source enthusiasts and Arduino users looking to get started with a cloud service for data storage, analytics and visualisation for networks of Internet-of-Things sensors and devices.

And thus the possibility of harnessing the Internet of Things is made possible once again by a new platform with many possibilties. Here at the LX Group we can partner with you – finding synergy with your ideas and our experience to create final products that exceed your expectations.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisReal-time data analysis with the IoT and GroveStreams

In this instalment in our series of articles focusing on various Internet-of-things systems, we explore the new Nearbus Open IoT Project. Although not the most complex of systems, Nearbus offers a level of control and interaction with devices and sensors which is ideal for demonstrations, proof-of-concept designs or even simple products where rapid development and low-cost are the main requirements.

Unlike other systems, Nearbus takes a different approach to device control. After loading the Nearbus on the device’s microcontroller, it is considered to be part of the “cloud” and as such transparent to the web services or API. In other words, you can read or write to the MCU’s registers directly from the cloud – which makes control much simpler than other systems. By “virtualising” the hardware in the cloud, it makes it much easier for existing services to interact with the real hardware, and in a more secure manner. Let’s examine the how this is possible with regards to the required hardware and software

device_mapping

Hardware – Due to market forces and age of the system at the time of writing, the Nearbus system only works with the Arduino-Ethernet platform. Thus the end microcontrollers used are Atmel ATmega328 programmed with the Arduino boot loader and interfaced with the Wiznet W5100 Ethernet controller. However this allows you plenty of GPIO, ADCs and CPU speed to complete a variety of tasks, and due to the open-source licensing of the Arduino platform the hardware cost for around A$20 per unit in volume. The main downside to this solution is the inability to use onboard WiFi chipsets, so the agent hardware needs to be connected to a separate WiFi router for true wireless control.

Software – Due to the current hardware requirement, the only code for each Nearbus node is their sketch (code) and the Arduino boot loader – both of which are totally open-source. The rest of the work is in interfacing your own cloud- or server-based applications with the Nearbus hub system. This transfer takes place via HTTP requests.

There are two methods for interfacing applications with the Nearbus system. The first method is the “transparent” mode which allows the agent to send and receive a packet of data over preconfigured periods of time, for example every five or ten seconds. This allows your cloud applications to call functions on the agent hardware as if it was controlling the MCU directly.

graphic_dash_0a

The second method is the “VMCU” mode (Virtual Microcontroller) which allows direct control of the basic MCU features such as GPIO, ADC, etc., via a web services API. This is the more complex method that maps the MCU remotely and thus allows direct control of the MCU’s registers and returns data in the raw from for your own web app to work with. The ability to map the registers removes a layer of complexity from the user or designer – as they don’t have to worry about network protocols, instead just be concerned with the microcontroller itself.

Furthermore you can configure, add and remove devices with a web-interface, and also create connections to send data to other IoT services such as cosm or twitter. If you don’t have a server capable of running your own web apps to interface with Nearbus, you can use other free or paid services such as Google Spreadsheet web apps – and demonstrations have been provided to show how easy it is to display, capture and analyse data from the hardware agent.

The Nearbus system is a different paradigm to the usual IoT systems. It may seem awkward or different to more conventional or consumer-oriented ways of doing things, however if you have a strong PHP and networking background it can be implemented easily with your server and applications. Due to the low hardware cost it’s ideal for monitoring or remote-control applications that don’t require complete real-time interaction.

If you’re interested in moving forward with your own system based on the Nearbus, we have a wealth of experience with the required hardware options, and the team to guide you through the entire process – from understanding your needs to creating the required hardware interfaces and supplying firmware and support for your particular needs.

Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success. We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines the Nearbus IoT Open Project

terminatorWe’re at a stage in the technology revolution where it’s difficult to tell whether the idea of machine to machine communication (M2M) is genuinely creepy, or if we’ve all just been watching too many sci-fi movies.

If cinema classics such as the Terminator and The Matrix franchises are to be believed, encouraging too many advances in M2M may not bode well for the future of humanity. In the real world however, this new technology means miracles performed for business, medicine, education and day-to-day life. In 2012 the machine to machine communication industry generated over $26 billion, and that’s expected to rise to $33 billion by the end of 2013.
 

From Fiction to Fact

And therein lies the rub. There are different levels of M2M and, in fact, this technology has been used in more basic forms for many years in technology engines and industry. We certainly don’t lose any sleep over the idea that our trusted automobile is about to spring into sentient life and try and terminate us in our sleep, yet a modern vehicle contains extensive M2M communication systems.

We’re talking about the more basic cause-and-effect or action-and-reaction style of communication which will play its role in the Internet of Things which we discussed last week. Firstly, let’s take a look at the underlying fundamental principles of how M2M works.
 

How it Works

The series of sequential events which allow machines to communicate with one another are as follows.
 

1. An event happens and is subsequently recorded by a sensor of some kind

2. The data recorded by the sensor is sent into a network

3. That data is read by software and becomes computerised information known as ‘telemetry’

4. This information is used by other computers (or machines) to react accordingly to the event
 

It seems like a relatively straightforward process and, in many respects, it is. Let’s take a look at each of the individual steps in a little more detail.
 

The Event

All around us is a massive and complex series of intertwined tiny events. The sensor data collected could be anything from a shift in temperature, to a change in stock inventory, human, animal or plant biometric data, time, distance or just about anything else.
 

The Network

The network could be wired, wireless or a hybrid of both. The network is the mode of communication used by one or more machines to transfer the data between one another. This is not new, wireless M2M was pioneered by Siemens in 1995.

The Translation

It’s easy for a human to look at a thermometer and understand that it’s around 37°. For the purposes of machine communication, this metric (or any other) must be translated into telematics code before being sent to another computer so it understands exactly what has been measured and where.

The Action

An event happens, it is recorded and translated into telemetry and communicated to another device. This device takes action based on the information received, completing the M2M cycle.

The Possibilities

A reduction in costs and increase in both quality and availability of the necessary technology to carry out Machine to Machine communication means we’re soon to enter the next phase of its evolution. Examples of this include applications such as:

  • Measuring biometric data from hospital patients which will automatically administer life-sustaining medicines based on the condition of their body.
  • Streamlining and automating processes behind international logistics companies which could save them millions of dollars annually.

It’s won’t be long before widespread adoption of M2M is experienced at the consumer level. This will have profound effects on our daily lives, many of which we cannot even envision yet.

The idea of smart homes and even cities will be a hot topic at the annual M2M conference being held in London this year, and the attendees will be the Who’s Who of global ICT companies.

Do We Need to Start Worrying?

For those who have indeed watched too much science fiction, or if you just have an overactive imagination, it’s worth noting that we probably have some time before we need to start worrying about the overthrow of the human race.

The reality of what makes a truly sentient being is still debated, and there is no indication that the answers are just round the corner. However, advanced M2M is likely to be a significant building block in the creation of a sentient artificial life form – if we ever get there.

At the LX Group we have a wealth of experience and expertise in the Internet of Things and M2M fields, and can create or tailor just about anything from a simple sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisShould We Be Worried About Machine to Machine Communication?

Moving on from our examination of Hardware design directions for Internet-of-Thing solutions, we now turn to the software portion of the solution. As there was many hardware options to consider, there is also a variety of choices to select from when looking for a service to collect data from and interact with your hardware. Each have their own features, costs and drawbacks – however these factors and more are subject to the goals of your project.

Nevertheless each have their own distinctive features, so let’s examine three existing and experienced market players in more detail. The first is known as “cosm”, however previously called “pachube”. Cosm is flexible in that you can use your own hardware designs or existing hardware from other vendors, and no hardware licensing is required. You can prototype very easily with cosm using inexpensive development platforms such as NXP’s mbed or even an Arduino-compatible board. This allows your hardware team to get started straight away. 

However the service is mainly for capturing and organising “feeds” of data from connected devices, and this can be done for zero cost. There are other options that allow device management and provisioning, however they are in beta stage at the moment. Nevertheless the cosm platform is effective and excellent for capturing data from remote devices for analysis and action – and with very low start-up and running costs it’s great for experimenting or proof-of-concept prototypes.

The next service we consider is “Thingspeak”. This is a fully open-source IoT platform that designed for data feeds and interaction with hardware in both directions. You can also import existing data collected before implementation. Although Thingspeak is open-source, it does provide security via API keys and user authentication. Rules can be created that react when data reaches a certain value or parameter – which cause twitter messages, can trigger hardware or other devices via a connected PC.

You can also export all captured data in .csv file format for ease of local analysis or system transfer. Due to the openness of the system, there’s a great variety of tutorials and examples available for Microsoft .NET, Arduino, python, processing and other environments – which will help your team get up to speed. And currently the service is no-charge. With these factors in mind, Thingspeak can provide a simple solution however more direct enquiries with the organisation would need to be made with relation to long-term changes in costings.

Finally we take a look at “Nimbits”. This service provides the usual cloud-based data gathering, analysis and so on – but using the Google Apps. This offers an incredibly reliable server, integration with Google Docs and other related software tools. As with Thingspeak, Nimbits is fully open-source and allows import and export of your own data. Nimbits offers integration with social media such as facebook and twitter.

The service is free for up to 1000 API calls per day, and then one cent per 1000 calls. Therefore you can again try it for free, or at a very low cost. Getting started is simple, with a range of tutorials on data capture, and interaction or messaging based on circumstances. It does require more coding than cosm or Thingspeak, however this isn’t an insurmountable challenge.

The IoT industry is growing, and even as we write this more services are being introduced and demonstrated. It can be difficult to choose which service to use, as they’re all quite young and untested over the long term, so having hardware and plans that can span two or more different services is essential for the longevity and sustainability of your IoT project.

Here at the LX Group we can discuss and understand your requirements and goals – then help you navigate the various hardware and other options available to help solve your problems. We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.
LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.auPublished by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.
Muhammad AwaisLX Group examines popular online IoT platforms

You may have seen the term “Internet of Things” bandied about recently in the popular press and media outlets, and like many fads considered it to be some sort of “buzzword” or meaningless phrase created by social media gurus that can be safely ignored.

However nothing could be further than the truth. The IoT (as we will now refer to it) is a broad definition for how almost any device around us can be connected to each other and other services over the Internet.

That may sound a little broad, so let’s consider some examples:

  • Checking the room temperature at home remotely, and control the HVAC if required – so you arrive home to a pleasant environment
  • Monitoring and controlling water flow levels for irrigation systems in four different states from a central office
  • Receiving an email from isolated vending machines when they detect possible theft, excess vibration or tilting
  • Real-time position monitoring of valuable cargo shipments as they travel between warehouses

With fixed or reliable wireless Internet access in all these examples, you can accomplish it all and much more. The IoT allows you to be in more than one place at the same time – to receive data from anywhere – and to control from anywhere – as long as Internet access is available.

Furthermore the volume and types of data that can be collected is only limited by your requirements and device type. With a constant IP connection between a sensor and your IT system – data can be gathered for real-time analysis. Information is power – and the more you know about your assets and their performance – the more agile your decision-making can become.

This type of machine communication isn’t new – for example you’d be familiar with terms such as M2M and telematics for many years. However the concept of channelling all the data over the Internet or a private IP network is what the IoT is about.

Existing sensors and actuators (the devices that send and receive data) can usually be adapted to the new IoT with little effort. For example, a sensor with a 4-20mA current loop output can be engineered with a current sensor that can be read with a basic microcontroller – and then interfaced to the IoT node.

As most IoT environments are skewed towards the consumer and technically-literate hobbyist, there will be work involved in adapting the system for your particular needs. For example, the provider may offer a range of doorbell or simple temperature sensors – but not devices that can transmit or receive data over standard data buses such as IIC or SPI. In situations like these, your engineering team or parter will be required to create interfaces between your current devices and the bridge to the IoT.

Enabling your devices to work with the IoT can be a challenge, due to the variety of systems and standards on the market, each with their own pros and cons. There are many points to consider, and these can include:

The initial costs of interface hardware, staff training and ongoing maintenance

  • Can you use your existing actuators and sensors – or create your own ones, or must you acquire new ones that are specific to the IoT system under consideration?
  • Is the required power and communications infrastructure available when upgrading particular areas to the IoT?
  • Will the data and commands be transferred using an external Internet-based host system, or can you keep the data within internal private networks?
  • If using an external host system, can they offer you an agreed SLA value?
  • Is the host system using proprietary data protocols – forcing you to use the host system provider’s engineering team to add your own devices to the system?
  • What security features are available to stop unauthorised access to the devices and the host system?

The Internet of Things is more than an exciting concept – it exists today, and your organisation can benefit from it. However due to the incredibly combination of systems and options – consider partnering with an independent organisation that has your needs first and foremost.

Here at the LX Group we can discuss and understand your requirements and goals – then tailor anything from a modified sensor to a complete Internet-enabled system for you. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad Awais2013 – The Internet of Things has just begun