All posts tagged: design

Moving forward from our introduction to the Electric Imp platform, we’ll now consider how it can be integrated into existing or new designs for your commercial products. Using the Electric Imp platform can potentially simplify development complexity and the time-to-market – and doing so is a lot simpler than you can imagine.

Electric Imp integration with your design requires connecting Electric Imp’s backend with the Internet services that you want to use, such as email or Twitter notifications, existing Internet-of-Things data visualisation services like Xively, or your custom application-specific Web services or mobile apps. It also requires interfacing the 802.11b/g/n-connected Electric Imp hardware card with your hardware design.

For relatively easy integration of Internet connectivity into your existing microcontroller-based hardware design, the Electric Imp card can be used simply as a peripheral Wi-Fi gateway that is connected via serial UART to your microcontroller.

Your hardware design simply needs a host microcontroller with a spare 3.3V UART available and a 3.3V power rail with at least 400mA of available current capacity to power the card. A standard SD card socket is used for the Electric Imp, with pin 6 connected to the data line on the ATSHA204 IC which is required by Electric Imp as a unique identifier of each Electric Imp-enabled hardware device.

Note that pin 6 on the card socket must not be connected to ground as with the standard SD card pin-out, and this data line to the cryptography IC must be pulled to +3.3V with a 100k resistor.

A sufficiently large decoupling capacitor (preferably 2.2μF) must also be placed close to the card socket’s Vdd pin. With this simple hardware configuration an existing microcontroller design can be made “Imp-ready” for Internet connectivity (excluding the cost of the Electric Imp itself) at a very low cost – an additional cost of only about one dollar for the SD card socket and ATSHA204 IC in large volume.

Your existing microcontroller can exchange basic messages to and from the Electric Imp card over its serial UART, which can then send them on to the cloud. The Electric Imp IDE allows you to write server-side “agents” which make communication with the Electric Imp hardware easy. “Agent” code runs on Electric Imp’s servers and allows you to execute relatively heavy tasks such as HTTP requests, while “device” code runs on the local Electric Imp silicon.

electric imp prototype

Electric Imp easily passes messages between the agent and the device, so, for example, you can easily write agent code to allow Electric Imp to communicate with Web services targeted at the Internet of things, such as Xively, and that agent then communicates with the device.

This means, indirectly, that you have a chain of connectivity that is very easy to work with that connects your existing microcontroller to these Internet services. You can push your code down to an Internet-connected Electric Imp remotely, anywhere in the world, from Electric Imp’s web based IDE.

Manufacturers are able to push firmware updates from the cloud out to customer hardware in the field automatically – for example for bug fixes, upgrades or modifications to the APIs they use to talk to their web services.

For new designs built from scratch around Electric Imp, it may make more sense to use the power of the Electric Imp’s built-in microcontroller, and interface your sensors and actuators to the Electric Imp directly. This is likely to result in a reduction in the overall cost and complexity of your hardware system.

Thanks to Electric Imp’s cloud-based approach, your system has benefits like the ability to push firmware updates to customer’s hardware in the field, anywhere in the world, with just a few clicks. Electric Imp development doesn’t require downloading and installing an SDK, or connecting a JTAG probe to your target hardware.

You simply develop your code in Electric Imp’s browser-based IDE and it is pushed down to the Electric Imp over the Internet from Electric Imp’s servers.

For commercial use, where you’re integrating the Electric Imp into a product that you’re marketing commercially and connecting the backend to your own service via a HTTP API, you need to pay service fees to Electric Imp.

As a vendor of a commercial Electric Imp connected product, you can pre-pay for Electric Imp service for many years, or opt to be billed annually for each of your active Electric Imp devices in the field that are enabled and used by customers. This is their model for applications where your product designers are using Electric Imp technology for Internet communications – and with your own app in the Apple iTunes and/or Google Play stores, without Electric Imp branding.

The alternative is that the product designer just incorporates a card socket and ATSHA204 “CryptoAuthentication” IC into their product, which makes the product “Electric Imp Ready”. The user can then plug in their own Electric Imp card and pay a fee to use Electric Imp’s own branded service, allowing many different kinds of devices to be connected to services such as Twitter, SMS and email notifications.

Due to the ATSHA204′s unique serial number, each hardware device can be uniquely detected and thus tell the Electric Imp servers what kind of Imp-enabled device it is when the Imp is plugged into it, and the Imp can then download the appropriate firmware from the cloud for that application. This offers a very simple method of setup and firmware maintenance that can be remotely-controlled and out of the hands of the end-user.

No matter your level of technical proficiency, the Electric Imp platform offers a level of Internet-of-Things integration to match your product or design requirements. Furthermore, your new product’s time-to-market or the time to integrate Electric Imp into existing products is much smaller than existing embedded Wi-Fi solutions.

Here at the LX Group we’ve already completed a variety of products that embed the Electric Imp platform, and are ready to offer our experience and know-how on this and every other stage of product development to meet your needs. As we say – “LX can take you from the whiteboard to the white box”. So for a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group explores Electric Imp product integration

Home automation is an emerging field with great potential, however without the appropriate standardisation of devices it can become a minefield of incompatibilities and frustrated customers. However there’s a standard we’re excited about – Zigbee Home Automation – that is quite promising.

ZigBee Home Automation is an application profile for Networked devices for home automation use – a global standard helping to create smarter homes that enhance comfort, convenience, security and energy management in the home environment. This standard for ZigBee wireless mesh-networked home automation applications can help make every home a smarter, safer and more energy efficient environment for consumers and families.

The standard gives your customers a way to gain greater control of the functionality of their home. By offering a global standard for interoperable products you it enables the secure and reliable monitoring and control of technologies in the home environment with robust, energy-efficient and easy to install wireless networks. Almost anything can be connected, such as appliances, home entertainment, environmental control and sensing, HVAC and security systems – providing convenience and energy efficiency benefits to the resident.

Smarter homes allow consumers to save money, be more environmentally aware, feel more secure and enjoy a variety of conveniences that make homes easier and less expensive to maintain. ZigBee Home Automation supports the needs of a diverse global ecosystem of stakeholders including home owners or tenants, product manufacturers, designers and architects, offering a standard that provides a reliable, consistent way to wirelessly monitor, control and automate household appliances and technologies to create innovative, functional and liveable home environments.

Typical application areas for ZigBee Home Automation can include smart lighting, access control, temperature and environmental sensing and control, intruder detection, smoke or fire detection, automated occupancy sensing and automated lighting or appliance control. The use of wireless radio networks eliminates the cost and effort of cable installation throughout the home, whilst the ZigBee standard provides certified interoperability and global 2.4 GHz ISM spectrum allocation, allowing manufacturers to take their ZigBee-based solutions to the global market relatively easily with relatively simple installation and operation.

Devices will have a typical RF range of up to 70 meters indoors or 400 meters outdoors, offering a flexibility to cover homes of all sizes. As with all ZigBee solutions, ZigBee Home Automation systems are built on top of an open and freely available specification based on international standards and represent a highly scalable solution with the ability to potentially network thousands of devices.

lx2

The devices are easy to install, even allowing for do-it-yourself installation in most cases. Employing wireless radio networks as well as battery power in many cases means that ZigBee Home Automation devices require little or no cable installation, making them ideal for easy retrofitting to existing homes and buildings as well as remodelling and new construction. Self-organising networks with easy device discovery simplify the setup and maintenance of networks consisting of many nodes, and the proven interference avoidance mechanisms in ZigBee networks ensure worry-free operation even in environments where coexistence with other 2.4 GHz radios such as 802.11 WiFi and Bluetooth is required.

The ZigBee Home Automation standard is designed for full coexistence with 2.4 GHz IEEE 802.11 wireless LANs and Bluetooth, as with all ZigBee technologies. Thus all devices based on these standards are designed to operate effectively in the same environment as WiFi networks, employing proven interference avoidance techniques such as channel agility.

Internet connectivity to the ZigBee network allows ZigBee Home Automation devices to be controlled via the Internet from anywhere in the world, as well as allowing WiFi-connected smartphones to be used as compact, powerful control and user-interface appliances to control the network of ZigBee appliances around the home.

Furthermore the standard is secure – employing AES128 encryption and device authentication to secure personal information, prevent unauthorised control of or access to the network, and to prevent interference or unauthorised access between independent neighbouring networks.

ZigBee Home Automation devices can be used to monitor household energy use, and to turn on and off devices remotely. Since ZigBee Home Automation is a ZigBee standard, ZigBee Home Automation devices will interoperate effortlessly with other products already in consumers’ homes using other ZigBee application profiles, such as ZigBee Light Link, ZigBee Remote Control, ZigBee Smart Energy or ZigBee Building Automation.

Finally – the standard is interoperable – integrating control and monitoring devices for lighting, security, home access and home appliances, allowing the customer to select from a variety of different products to meet her needs. All ZigBee-certified products are interoperable with each other and with other ZigBee networks, regardless of their manufacturer. All certified ZigBee devices, including but not limited to ZigBee Home Automation devices, from different vendors all use the same standards and are tested and certified to be fully interoperable with each other, allowing the consumer to purchase new devices with confidence.

With our existing experience in producing a wide range of devices incorporating Zigbee-based wireless technology our engineers can take your ideas for home automation to the final product stage.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines Zigbee Home Automation

The wireless lighting control market has seen a shift in recent years away from bespoke or proprietary lighting solutions, as efficient and low cost solutions have been introduced to the general market based around standards that you may already by familiar with – such as ZigBee – which provide opportunities for greater system standardisation and interoperability.

Whilst consumers increasingly recognise the value of the convenience, flexibility, and comfort that wireless, embedded “Internet-of-Things” devices bring to the home or office, a barrier to widespread adoption of these kinds of home automation systems in the past has been that traditionally, most product manufacturers have not provided a system that allows interoperability among different lighting and home automation vendors.

ZigBee Light Link was created to save time, money and installation labour by standardising simple, easy to install networks of intelligent lighting as well as control devices such as light switches, occupancy sensors, daylight sensors and Wi-Fi connected network gateways which allow the ZigBee Light Link network to be controlled by the consumer from a PC, tablet or smartphone.

lx0

As one of many ZigBee application profiles, ZigBee Light Link is a ZigBee application profile aimed at intelligent, wireless control of household lighting. It provides the lighting industry with a global standard for interoperable “smart” consumer lighting and control products that are easy to use, and it allows consumers to achieve wireless control over all their LED fixtures, light bulbs, timers, remotes and switches from their smartphone, PC or tablet. Products using the ZigBee Light Link standard allow consumers to configure their lighting remotely to reflect ambience, task or season, whilst at the same time improving energy efficiency.

The ZigBee Light Link 1.0 application profile is currently published, whilst the ZigBee Light Link 1.1 application profile specification is presently under development. Leading home lighting solution manufacturers who have contributed to the development of the ZigBee Light Link standard include GE, Greenwave, OSRAM Sylvania and Philips.

Products employing the ZigBee Light Link standard, and earning the ZigBee Certified seal, are known to the consumer to be interoperable and as easy to use as a common dimmer switch. Adding or removing devices from the lighting network is quick and easy, making it easy and intuitive for consumers to use every day. Since ZigBee Light Link is a ZigBee standard, ZigBee Light Link-based smart lighting solutions will interoperate effortlessly with consumers’ other devices employing ZigBee standards such as ZigBee Home Automation, ZigBee Input Device and ZigBee Remote Control.

A ZigBee Light Link network is a secure mesh network which allows communication to be safely relayed by multiple individual network nodes, i.e. control devices and lamps. A single light or group of lights can have the user’s favourite lighting state stored in memory and recalled immediately – even for a whole house worth of lights, at the press of a button.

Additional nodes can easily be added to or removed from the network without affecting system functionality or integrity. Adding or removing lamps is very easy and robust. Contrary to other networking solutions, it does not matter which lamp is installed first, or whether other lamps in the network are switched on or off. With ZigBee Light Link, adding a new lamp at a remote location is as easy as adding a new lamp within RF range.

Smartphones, tablets and PCs can control lighting products based on ZigBee Light Link via a ZigBee network gateway connected to ethernet or a Wi-Fi network. Such a connection also allows the ZigBee Light Link network to be controlled via the Internet, via web applications or mobile smartphone apps, for example.

lx0

Devices such as ZigBee-networked wireless wall switches and remote controls may also be used to control the lighting network. Functionality such as automatic timer control, “alarm clock” use, or “vacation mode” security use can also be defined in software and configured by the user with a simple software interface on the PC or mobile device.

The ZigBee Light Link profile can be used with ZigBee transceivers and ZigBee-ready system-on-chip microcontrollers from several semiconductor manufacturers – for example, the CC2531 or CC2538 IEEE 802.15.4/ZigBee System-on-Chip solutions from Texas Instruments.

 Texas Instruments offers the Z-Stack Lighting Software for the CC2530 ZigBee-enabled RF system-on-chip, which is an implementation of ZigBee Light Link and comes with a sample demonstration program for both a wireless “smart light” and “smart switch”, allowing engineers to easily get started in the development of an easy to use lighting control solution based around ZigBee Light Link.

The Z-Stack Lighting development kit from Texas Instruments consists of two “Z-Light” reference design RGB LED lamps based around the CC2531 chip programmed as ZigBee Light Link Colour Lights and a CC2531-based USB gateway dongle programmed as a ZigBee Light Link Colour Scene Remote, which can be operated independently as a remote control with on-board buttons or used as a gateway to interface the lighting network to PC software, for software-based advanced control and functionality.

This development kit contains everything needed to set up a basic ZigBee Light Link network and control the lamps either individually or in groups using either buttons on the controller node or software on the PC. TI’s website contains tools and application examples for free download that can be used to experiment with more advanced features of the ZigBee Light Link lighting control protocol and to develop demonstrators for direct wireless control or control from cloud-based or web services. Schematics and documentation for these hardware reference designs are also fully provided for free download from TI.

Thus the information and hardware is available for you to integrate products into this new standard of wireless lighting control, and if this technology interests your organisation but don’t have the expertise in – or just need to have it taken care of by a team of experts – and you’re not sure how to progress with a reliable implementation, we can partner with you to take care of this either in revisions of existing products or as part of new designs.

With our experience in retail and commercial products we have the ability to target your product’s design to the required end-user market and all the steps required to make it happen.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisLX Group examines the Zigbee Light Link system

Making the decision to create a new product or the next generation of an existing product is always an exciting time for design engineers and hopefully the entire organisation. There’s always new features, options and technologies that can be integrated for the perceived benefit of the end user.

However as technology marches on, there is the possibility of going too far. At first that may seem like an odd statement, however considering the complexity of some products you may wonder how they’re comprehended by the end-user, let alone sales staff. This phenomena is also prevalent in the Internet-of-things arena, where “features” and usability can get out of hand.

Let’s consider the potential dangers of over-engineering and feature overcomplexity when bringing an Internet-of-Things automation or embedded sensor appliance to the market. With advancements in available technology, increasing miniaturisation and decreasing costs of sensors and components it’s tempting for more and more features and capabilities to be added to your device or product design, just to make your product “the best” or to satisfy the “because we can” motivation of the engineering team.

duh1

However, it can be important to keep this kind of over-engineering or “feature creep” under control in order to deliver a product that is easy for consumers and salespeople to understand and offers simple, sensible, intuitive user experience with a sensible amount of functionality – not too little and not too much – from a hardware system that is small enough and simple enough that it can practically be manufactured and offered to the market at an acceptable price for good consumer uptake.

Sure, your design might be “the best” from a technology standpoint, but what if the “best” hardware is significantly more expensive than the competitor’s not quite as whiz-bang product and your design is not considered financially attractive to consumers relative to the level of functionality that the users actually want?

It’s pointless to try and invent more and more features just because it is technologically possible to do so if those features don’t actually accomplish anything that is actually valuable to consumers. For example, providing a washing machine with Internet-of-Things connectivity and remote access and control via email or a smartphone application is quite pointless since a human operator actually needs to be there to load and unload the clothes from the machine.

The features and user experience should be kept intuitive and usable, without dragging the user down into an insane range of different options that most people are probably never going to use most of the time anyway.

Internet-of-Things sensor networks and appliances targeted at home and building automation should be easy to set up and configure, they should be compatible with existing typical household network infrastructure such as single-band 2.4 GHz 802.11b/g Wi-Fi access points (5 GHz might be technically “better”, for example, but users don’t want to upgrade all their existing access points just to use your gadget), and they need to be compact, visually unobtrusive – and as simple as possible in order to keep the hardware cost at a level that is sufficiently small for market acceptance.

This is particularly true for appliances that are designed for use as a network of many distributed devices – the cost of the total set of all the hardware devices needed for a typical network deployment needs to be kept at a reasonable level so that the entire usable system is available to consumers at an overall price point that they’re willing to pay. For Internet-of-Things networks consisting of meshes of multiple wireless devices to become ubiquitous, each node device needs to be as cheap and as small as possible.

For example, suppose that you release a smart email-controlled Internet-of-Things light bulb onto the market and it costs $100. Will customers replace their existing light bulb, which costs say $5, with your new $100 light bulb with the added convenience of control from your PC? Well, some consumers might try a single light bulb or two just to experience the relatively novel idea of a consumer-focussed household Internet-of-Things appliance.

However very few customers are likely to consider it worthwhile to set up a network of a dozen hundred-dollar bulbs to replace every bulb in the home. Such a system might pick up a few customers – the relatively wealthy technology fans who want to be early adopters of advanced, relatively complicated home automation and Internet-of-Things technologies, even if the price is high. But isn’t it better to have a product that is desirable for a broader market beyond just those who are willing to pay lots of money for the most powerful, advanced technology on the market?

duh2

Furthermore, realistic testing of your product’s usability and user experience is vital during the development process. Adding too many features can befuddle customers as well as befuddling salespeople whose job it is to help convince customers to buy your product and to demonstrate its user experience with consumers. Over-engineering and feature creep, even if it’s possible to integrate lots and lots of features from a technical engineering standpoint, can negatively affect sales as well as affecting your brand reputation.

The best user interface is “no user interface” – a user interface design that approaches the theoretical ideal of being completely transparent and natural in its interaction with the user. Similarly – although I know it might sound risky – the best documentation design is “no documentation”, or something approaching it. The ideal product is so intuitive and natural in its user experience that it just kind of “documents itself”, with little or no documentation really required. This means that the amount of documentation that the customer needs to read is minimised as well as minimising the amount and the cost of documentation that the manufacturer needs to print for every unit shipped.

With hindsight you can examine your own existing products and that of your competitor’s, and with a fresh perspective perhaps consider how things can be simpler for the end user without sacrificing usability. This is a simple step to initiate, however it can require a total redesign or approach from a fresh set of minds.

As part of our complete product design service, here at the LX Group we can partner with you to work on revisions of existing products or bring new ideas to life. With out experience in retail and commercial products we have the experience to target your product’s design to the required end-user market and all the steps required to make it happen.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group discusses the danger of over-engineering

After the initial excitement of generating an idea for a new Internet of Things device, there’s still countless design considerations to take into account – some of which you may not have even heard of. And a fair amount of these will be generated by the needs of specific markets around the world. So let’s consider some of the challenges involved in designing an Internet-of-Things device or appliance and bringing it to the global market.

What are some of the different factors that need to be taken into account when bringing a hardware device to market internationally? The need for multi-voltage off-line power supplies and multi-lingual product manuals are well-known things we’re used to with all our technology products – but with modern Internet-of-Things gadgets employing Internet connectivity, cloud computing and wireless radio-frequency mesh networks, there are some increasingly important factors to consider which may not be as familiar to the design team.

For mains-powered systems, international differences in mains voltage and frequency are an obvious factor to start with to ensure compatibility with the worldwide market. Modern switch-mode power supplies can easily be designed to span the possible worldwide voltage range between 100 V AC and 240 V AC without manual switching or configuration, at grid frequencies between 50 and 60 Hz. However, it should be remembered that the mains voltage is only assured within a tolerance of around plus or minus 10 percent, so an example of a good input voltage specification for a well-designed modern SMPS might be 85-265 V RMS AC at a grid frequency of 50-60 Hz. Extra attention is needed in systems where a clock or timebase is derived from the frequency of the AC grid – in systems of this sort, manual specification of the frequency may be required even if the power supply itself does not care about the AC frequency.

lx1When designing and deploying wireless sensor networks, Internet-of-Things networks and similar modern technologies where radio communication is used, attention also needs to be paid to differing international allocations of RF spectrum and licensing requirements for the use of the RF spectrum. Spectrum allocations and licensing requirements for Industrial, Scientific and Medical (ISM) bands differ between countries – for example, the 915 MHz band should not be used in countries outside ITU Region 2 except those countries that specifically allow it, such as Australia and Israel.

A device that operates with a certain frequency spectrum and power level that requires no license, or falls into a class license, in one country may not be able to be legally operated in another country without specific operator licensing. For example, some devices operating in the 70 cm (433 MHz) spectrum that fall within the Low Interference Potential Device (LIPD) class license in Australia and hence can be freely operated cannot be used in the United States except by licensed amateur radio operators. The European Union’s Reduction of Hazardous Substances (ROHS) directive took effect in 2006, restricting the use of certain substances considered harmful to health and the environment, such as lead and cadmium, except in technological applications where elimination of these elements is not viable.

While RoHS compliance is not required for all electronic equipment sold throughout the world and is only strictly required for devices sold into the EU market, it is achieving widespread acceptance throughout the electronic manufacturing industry worldwide. However, in some specialised applications where extremely high reliability and resilience against factors such as tin-whisker formation is required, such as space and defence technology, these factors may take precedence over ROHS compliance and the use of lead-containing solder alloys and platings may be specified.

lx2Different testing organisations are responsible for setting and enforcing the standards for electrical safety and RF spectrum usage in different countries, and it can be challenging to keep track of the different testing requirements needed before bringing your product to market in every market country.

For example, Underwriters Laboratories is well known in the United States for their role in drafting safety standards and providing compliance testing procedures for safety-related factors, whilst approval from the FCC is required to recognise compliance with RF spectrum and electromagnetic interference requirements – a completely separate thing to safety certification. And for another example, the TUV provides a similar role in the verification of safety-related standard compliance in the German market.

Other social and socio-economic factors that might not be as obvious can affect the user experience your product provides in different customer markets – for example, a device that constantly needs to “phone home” to an Internet-connected service may not function effectively in a country without widely available, or reliable, Internet access. In a situation like this, it may be beneficial to have a system designed to store and buffer its collected data locally on a storage device and only synchronise with an Internet service occasionally when connectivity may be available.

In conclusion, there’s a myriad of not only standards but also operational considerations to take in account when designing your next product for the global market. However don’t let that put you off – the greater the challenge, the greater the possible success. But if you’re not sure about testing, standards, compliance, markets abroad or any other factor – parter with an organisation that does: the LX Group.

Here at the LX Group we have the experience and team to make things happen. With our experience with connected devices, embedded and wireless hardware/software design, and ability to transfer ideas from the whiteboard to the white box – we can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisDesigning Internet of Things Devices for the World

The fact that the Internet of Things shows a lot of promise both now and in the future is certain – and your customers, designers and the public will have an almost limitless amount of ideas with regards to new products and their implementation. However when the time comes to select the hardware to drive these innovations, choosing from one of the wireless chipsets can be a minefield – and more so when WiFi is involved.

802.11 wireless LAN is an attractive technology for building networks of wireless sensors and embedded devices due to its widespread use and the availability of nearly ubiquitous existing network infrastructure. Let’s take a look at a few existing chipsets on the market today that can be used to add wireless networking to existing embedded designs with relatively low complexity and cost.

First there’s the RN131 802.11b/g WiFi module by Roving Networks – a complete low-power embedded networking solution. It incorporates a 2.4 GHz radio, processor, TCP/IP stack, real-time clock, crypto accelerator, power management and analogue sensor interfaces into a single, relatively power-efficient module. In the most simple configuration, the hardware requires only 3.3V power, ground, and a pair of serial UART lines for connection to an existing microcontroller, allowing wireless networking to easily be added to an existing embedded system.

The module incorporates a U.FL connector for connection of an external antenna, without any microwave layout or design needed to use the module. This module has a current consumption of 40mA when awake and receiving, 200mA when actively transmitting, and 4µA when asleep, and the device can wake up, connect to a WiFi network, send data, and return to sleep mode in less than 100 milliseconds. This makes it possible to achieve a runtime on the order of years from a pair of standard AA batteries – an ideal solution for power-efficient, battery powered wireless sensor network and Internet-of-Things solutions.

fbd_swrs126

Next there’s the Texas Instruments CC3000 Wireless Network Processor – which allows WiFi to be added to any existing microcontroller system relatively easily, and at a low cost. The CC3000 integrates an entire IPv4 TCP/IP stack, WiFi driver and security supplicant on the chip, making it easily portable to lightweight microcontrollers without the memory burden of implementing a TCP/IP stack in the host microcontroller where relatively low-power, low-cost microcontrollers such as 8-bit AVR or PIC devices are used. And this compact module measures only 16.3mm x 13.5mm.

CC3000 reference designs available from TI demonstrate chip-antenna based designs that are already FCC, IC and CE certified, which can make it easier to develop bespoke solutions that can pass compliance testing for products going into markets where such compliance is needed. The CC3000 requires no external crystal or antenna balun, and in fact requires almost no external components at all except for an SPI interface to the host microcontroller and an antenna – and the device costs less than $10.

The flexible 2.7-4.8V power supply requirement offers great flexibility when combined with battery power or energy harvesting solutions. However, this chip is not a PCB-based module, meaning that a 50 ohm 2.4 GHz antenna must be added externally – so the designer must have a little familiarity with microwave design, such as microstrip transmission line layout and the choice of the right antenna connector. However, this offers the designer complete flexibility to choose the most appropriate antenna type for the size, range and gain requirements of the design – a larger external antenna, a compact chip antenna, or a microstrip antenna fabricated on the PCB with no bill-of-materials cost.

Our final subject is the Redpine Signals’ Connect-IO-n series of modules which allow 802.11 wireless LAN connectivity to be added relatively easily to an embedded microcontroller system. In collaboration with Atmel these modules have been optimised for use with Atmel microcontrollers, particularly the Atmel AVR XMEGA and AVR UC3 series microcontrollers.

Some modules in this family provide 802.11a/b/g/n Wi-Fi connectivity, whilst all modules provide the TCP/IP stack on board and are FCC certified, making RF compliance certification of your entire design easier. These modules are aimed at providing the ability to add 802.11 wireless connectivity to 8-bit and 16-bit microcontrollers with low integration effort and low memory footprint required in the host microcontroller to support the WiFi device, especially where 802.11n support is desired.

Like the other chipsets we’ve discussed, the modules in this series can be interfaced to the host microcontroller over a UART or SPI interface, and similarly to their competitors, a standby current consumption of only a few microamps potentially allows for years of battery life with no external energy source as long as the radio is only briefly enabled when it is needed.

The RedPine RS9110-N-11-28 module from the Connect-IO-n family in particular is relatively unusual in that it provides dual-band 2.4GHz/5GHz 802.11 a/b/g/n connectivity for your embedded device – supporting connection to any WiFi device or network and potentially avoiding congestion in the 2.4 GHz band as used with 802.11b/g devices.

2

Whilst 802.11n offers a significant increase in the maximum net data rate from the 54 MBit/s of 802.11b/g to 600 Mbit/s, do you really need 600 Mbit/s of data to your wireless sensor network or embedded appliance? I doubt it. However, one case where you might want an 802.11n radio supporting operation in the 5 GHz spectrum for your wireless sensor network device is if your wireless LAN infrastructure is a pure 5 GHz 802.11n network – whilst this breaks compatibility with legacy devices, it delivers maximum network performance.

As you can see the possibilities for low-power connected devices are plentiful and the hardware is available on the open market. It’s then up to your team to turn great ideas into great products. Furthermore modifying existing products to become connected is also a possibility. However if wireless or Internet-connectivity is new to your team – and you’re in a hurry, have a reduced R&D budget, need guidance or want to outsource the entire project – it can be done with the right technology partner.

Here at the LX Group we have the experience and team to make things happen. With our experience with connected devices, embedded and wireless hardware/software design, and ability to transfer ideas from the whiteboard to the white box – we can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines wireless chipsets for IoT devices

Wearable computing – the use of personal computers, displays and sensors worn on one’s person – gives us the potential for advancement in human-computer interaction compared to traditional personal computing – for example the ability to have constant access and interaction with a computer – and the Internet, whilst going about our daily activities.

This could be considered the ultimate in multitasking – the use of your computing device at any time without interrupting your other activities. For example, the ability to read an email or retrieve required information while walking or working on other tasks. Wearable computing potentially offers much greater consistency in human-computer interaction – constant access to the computer, constant connectivity, without a computing device being used in an on-and-off fashion in between other activities.

glass1

Once contemporary example of this is the new Google Glass, which represents an advanced, sleek, beautifully designed head-mounted wearable computer with a display suitable for augmented-reality applications – or just as an “ordinary” personal head-mounted display. Even before its public release, the frenzy surrounding Google Glass amongst technology enthusiasts demonstrates the potential level of market demand for wearable computers.

However, with a price of at least US$1500 price tag of Google Glass, (at least for its “Explorer Edition” beta version) this leads many to consider what potential might exist for the deployment of wearable computing and wearable sensor-network technologies – however at a lower cost.

One example is the category known as “Smart Watches” such as the Sony SmartWatch and Pebble Technology’s “Pebble” e-Paper watch – which both offer constant, on-the-go access to information from the Internet – and thus become a member of the Internet of Things – at a glance of the wrist. Text messages and email notifications are amongst the most simple, common examples of data that can be pushed to a smart watch, but the display of information from a multitude of other Internet-connected data streams is possible.

With the growing popularity and increasing hardware capabilities of smart phones, it is increasingly taken for granted that a smart phone carried on one’s person can act as a gateway between the Internet (connected via the cellular networks) and other smaller, lower-power wearable computer or sensor devices worn on the body and connected back to the smartphone via standard data links such as WiFi or Bluetooth. In using the smart phone as an Internet connection, the size, price and weight of the wearable device can be significantly reduced – which also leads to a considerable reduction in cost.

Furthermore, apart from providing mobile Internet connectivity, the smart phone can also provide a large display and an amount of storage capacity – which can be harnessed for the logging, visualisation and display of data collected from a network-connected sensor node wearable on one’s body, or a whole network of such sensor nodes distributed around different personal electronic devices carried on the person and different types of physical sensors around the body.

The increasing penetration of smart phones in the market and the increasing availability and decreasing cost of wireless radio-networked microcontroller system-on-chips, MEMS glass2
sensors and energy efficient short-range wireless connectivity technologies such as Bluetooth 4.0 are among some of the factors responsible for increasing the capabilities of,
and decreasing the cost of, wearable computing and wearable Internet-of-Things and sensor platforms.

Speed and position loggers, GPS data loggers and smart pedometers intended for logging and monitoring athletic performance, such as the Internet-connected, GPS-enabled,
Nike+ system; along with biomedical instrumentation and sensor devices such as Polar’s Bluetooth-connected heart rate sensors are other prominent examples of wearable Internet-of-Things devices which are attracting increasing consumer interest on the market today.

Combined with display devices such as smart watches, smart phones and head-mounted displays such as Google Glass. these kinds of wearable sensors create a complete wearable machine-to-machine Internet-of-Things network that can be self-contained on one’s person. Which leads us to the next level of possibilities – what do your customers want a device to do? And how can it be accomplished? And do you have the resources or expertise to design, test and bring such a system to the market?

It isn’t easy – there’s a lot of technology to work with – however it can be done with the right technology parter. Here at the LX Group we have the experience and team to make things happen. With our experience with sensors, embedded and wireless hardware/software design, and ability to transfer ideas from the whiteboard to the white box – we can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWearable Computing and the IoT

Recently an increasing number of networked devices are finding their way into consumer, industrial and medical applications. Such networks often employ distributed nodes which cannot practically be connected to the power grid – through design or through necessity. Therefore powering such devices can possibly be a challenge – due to the costs of either running from battery or solar power, sending technicians for maintenance visits to replace batteries – or having to install one’s own power network for the IoT system.

This is where energy efficiency is key – by using highly energy-efficient design practices in both the hardware and software levels, the power requirements can usually be reduced significantly. In doing so the power supply paradigm can be altered to one of lower cost and higher efficiency. Especially for remote or portable devices that use RF/microcontroller chipsets – the smaller the power requirement the better.

ee2

High-power and efficient wireless network nodes can be engineered using modern RF microcontroller system-on-chip devices, activating sensors and peripheral hardware devices only when they are required, and then putting them into low-power sleep modes when not in use. Similarly, the RF transceiver can be switched into a very-low-power sleep state until the microcontroller decides that a transmission of collected sensor data is required. The microcontroller can then wake up the radio, perform the required transmission, and then revert to sleep mode.

In some cases, a burst of data transmission across the wireless network might only occur when a small, intermittent energy-harvesting power supply has accumulated enough energy in a capacitor to power a transmission. Alternatively, a low-power wireless sensor node can “wake-on-radio”, only taking the microcontroller out of its sleep state when a message is received over the wireless network requesting a sensor readout and only powering up the sensors and microcontroller at this time.

With most of the components of the system, such as the microcontroller, radio and sensors – each kept off-line or asleep for the largest practical amount of time – efficiently designed wireless sensor nodes may achieve operating timescales as long as years off a single battery. Today’s typical wireless RF microcontroller system-on-chips targeted at IoT applications typically consume about 1-5 microwatts in their “sleep” state, increasing to about 0.5-1.0 mW when the microcontroller is active, and up to around 50 mW peak for brief periods of active RF transmission.

However when considering the design of energy-efficient, low-power IoT sensor networks, it can sometimes be advantageous to think not just in terms of power consumption, but in terms of the amount of energy required to perform a particular operation. For example, let’s suppose that waking up a MEMS accelerometer from sleep, performing an acceleration measurement and then going back to sleep consumes, say, 50 micro joules of energy; or that waking up an RF transceiver from sleep, transmitting a burst of 100 bytes of data and then going back to sleep consumes 500 micro joules.

If we know the specific energy consumption of each operation, then the average power consumption is simply the energy per operation multiplied by the frequency of that operation, summed over the different kinds of operations. Of course, this assumes that the continuous power consumption of each device when it is asleep is very small and can be ignored. Alternatively, if we have a certain known power budget available and a known energy budget for each sensing, computation or transmission operation – we then know the maximum practical frequency at which a sensor node can perform sensor measurements and transmit its data.

ee

Additionally, efficient wireless sensor nodes can take advantage of some form of energy harvesting power supply – employing energy sources such as solar cells, vibrational energy harvesters or thermoelectric generators to minimise maintenance and extend battery life – with the possibility of completely eliminating external power supplies, but only if the power consumption of the system is small enough and a capacitor is employed for energy storage.

In many applications, solar cells are the most familiar and relatively mature choice for low-power network nodes operating outdoors or under good indoor light conditions. However, other technologies suitable for extracting small amounts of power from the ambient environment exist. For example, a wireless sensor node set up to monitor bearing wear in a generator could employ a piezoelectric crystal as a vibrational energy harvester, converting motor vibration into usable energy, or a thermoelectric generator mounted on a hot exhaust could harvest a small amount of otherwise wasted energy from the thermal gradient.

Typical vibrational energy harvesters usually operate with a cantilever of piezoelectric material that is clamped at one end and tuned to resonate at the frequency of the vibration source for optimal efficiency – although an electromagnetic transducer can be used in some cases. Whilst the electrical power available is dependent on the frequency and intensity of the vibrations, the cantilever tip mass and resonant frequency can generally be adjusted to match the machinery or system that energy is to be harvested from.

Furthermore, energy harvesting management ICs that manage the accumulation of energy in a capacitor over a period of time can enable short bursts of relatively high power consumption, such as when a node wakes up and transmits a burst of data, and are particularly well suited to low-power wireless sensor nodes.

Even with the examples mentioned above, the energy-efficiency possibilities are significant and can be a reality. When designing prototypes or proof-of-concept demonstrations you may put energy use to one side, however when it comes time to generate a real, final product – you can only benefit from taking energy-efficiency into account.

If you are considering creating or modifying existing designs and not sure about the energy-saving and generating options that are available, be efficient and discuss your needs with an organisation that has the knowledge, experience and resources to make your design requirements a reality such as here at the LX Group.

At the LX Group we have a wealth of experience and expertise in the embedded hardware field, and can work with the new and existing standards both in hardware and software to solve your problems. Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisEnergy efficiency for the Internet-of-things

As the Internet-of-things industry and products is justifiably booming – like any emerging market or technology area there are several challenges and pitfalls to work through and hopefully avoid. As with the boom in personal computer types in the early 1980s, through to various standards in video and audio media towards the end of the last decade – making the right choices now can be a challenge.

When choosing IoT platforms – do you face problems with privacy, security, or expensive over-engineering of technology for technology’s sake? Are you considering replacing existing systems that aren’t really broken in a way that offers no real return in terms of user experience or economic value – just to be on the “latest craze”? With the standards of the IoT not being entirely prevalent or fixed, issues such as reliability, privacy, security, ownership and control of private data still pose questions that are barely beginning to be worked out.

iot2

The Internet of Things is not just something that is hidden away – out of sight somewhere inside an embedded control system. The growth in this field is also represented in a growth in the use of smart devices and technologies that are directly facing the domestic or industrial consumer.

One of these challenges is security of end-user data. As various devices enter the domestic arena, increasingly-enlightened consumers will have be concerned and have various questions about their privacy and security. And as these Internet of Things devices start to generate detailed real-time data about how much electrical power you’re using, which lights and appliances you have turned on at particular times, or even personal medical data logged directly from biomedical sensors – customers and end-users expect to know where that data is being collected and used, by whom, and why. To achieve confidence and acceptance amongst consumers, companies collecting data through Internet-of-Things systems must do so only with the consumer’s consent and only in a secure and controlled fashion.

The next challenge to meet is demonstrable financial benefit. Consumers expect that if they’re paying for new technology that they serve them – and not just the utility or manufactured. For example, if residential electricity consumers are paying for new smart metering infrastructure – then consumers expect to see how the new technology actually benefits them, not just providing a financial benefit to the energy provider who can save money by removing the number of meter readers.

Do the new technologies actually show a clear financial benefit, to corporate, industrial and household users? It has been said, for example, that one Australian electricity distribution company is “building its own Internet” to collect electricity billing data from residential smart meters. It seems ostensibly absurd to “build your own Internet” instead of building solutions that operate – with appropriate security and reliability – on top of the established Internet.

Although everyone may seem to have an education with regards to IoT devices, another challenge is educating potential and existing customers to the benefit of the devices. For example, as Internet-of-Things devices must be relatively inexpensive if they are to become truly ubiquitous in the home and not only adopted by early adopters who see past the initial price tag. For example, if an IoT-enabled light fixture costs $100 against a few dollars for a conventional bulb, it is not clear how widely adopted such a product will be. Although it’s worth noting that the total cost of ownership should be considered by the consumer – including the necessary cloud or software services, and not just the cost of the hardware node.

iot1

Another larger challenge, and one that needs to be overcome (or prepared for) before any final sales and installation is the hardware or software standards being used in the device. For example can the device work with IPv6 addressing? With the upcoming exhaustion of IPv4 addresses the address space represents a significant limit for the Internet of Things, for example there is no way that every refrigerator can have an IPv4 address exposed out to the Internet. However, with the introduction of IPv6 the problem is solved. Thus hardware needs this support.

Although the Internet-of-things will eventually prevail – the example challenges listed above and many more still exist. Improvements for the end-user and operator still introduce design problems and perhaps a little “fortune-telling” just as any new wave of technology or standards.

But how do you ensure your hardware will meet upcoming or new standards? Will your Internet-of-things ideas translate into profitable, desired systems by all stakeholders – not just your design team. Or can your existing systems be enhanced to benefit from the Internet-of-things without a total redesign? All these and many more questions can be answered by a design house with the expertise and experience such as here at the LX Group.

At the LX Group we have a wealth of experience and expertise in the IoT field, and can work with the new and existing standards both in hardware and software to solve your problems. Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisDesign challenges for the Internet of Things

Although we have recently been focusing on the systems and hardware that can be used in various Internet-of-things applications, there’s much more to learn and understand. One particular aspect is the way in which devices send and receive data between themselves and servers – and an example of that is MQTT.

Message Queue Telemetry Transport, or MQTT, is an open protocol for machine-to-machine (M2M) communications that enables the transfer of telemetry-style data in the form of messages from a network of distributed devices to and from a small message “broker” server – whilst maintaining usefulness over high-latency, expensive or bandwidth-constrained networks. This publish/subscribe messaging transport protocol is designed to overcome the challenges of connecting the rapidly expanding physical world of sensors and actuators as well as personal computers and mobile devices.

mqtt-hub

The origin of MQTT goes back to the late 1990s, where co-inventor Andy Stanford-Clark of IBM became immersed in M2M communication whilst working with industry partners to mine sensor data from offshore oil platforms, to inform better preventative and predictive maintenance. One of those industry partners was Arlen Nipper of Arcom, an expert in embedded systems for oilfield equipment. Together, Stanford-Clark and Nipper wrote the initial version of MQTT in 1998, and their open-source messaging software has continued to be improved over the following years.

Until recently, one of the challenges limiting widespread development of IoT technologies has been the lack of a clearly accepted open standard for message communication with embedded systems. Today, however, MQTT looks set to play an increasingly significant role in facilitating the Internet-of-Things. In much the same way that the HTTP standard paved the way for the widespread adoption of the World Wide Web as a tool for the sharing of people-to-people information on the Internet, MQTT could set the stage for the machine-to-machine equivalent of the WWW.

MQTT is particularly well matched with networks of small, distributed, lightweight, and pervasive devices – not just mobile phones and personal computers, but embedded computers, sensors and actuators – which can make up the “Internet of Things”. The MQTT protocol specification enables a publish/subscribe messaging model in a very lightweight way, useful for connections with remote devices where a small code footprint is required – low-cost 8-bit micro controllers, for example – and/or where network bandwidth is at a premium.

There is also another standard for sensors – MQTT-S, for which this specification is aimed at embedded devices on non-TCP/IP networks, such as ZigBee/802.15.4 wireless sensor mesh networks. MQTT-S is an extension of the MQTT protocol aimed at wireless sensor networks, extending the MQTT protocol beyond TCP/IP infrastructures for non-TCP/IP sensor and actuator networks. Furthermore, MQTT is already widely supported by servers and brokers including IoT implementations such as cosm, Thingspeak, nimbits, and more.

MQTT is already used in a wide variety of embedded systems. An example documented by IBM demonstrates a pacemaker that communicates via RF telemetry to an MQTT device in the home of a patient – allowing nightly data uploads to the hospital for analysis. This allows recovering patients to leave hospital earlier to recover at home whilst still being monitored by medical professionals. Or if an unexpected event occurs, the system can immediately alert the hospital and emergency services without any patient interaction.

mqttmedical

Furthermore IBM has recently announced its’ new “MessageSight appliance”, designed to handle heavy-duty real-time sharing of large amounts of data between sensors and devices and using the MQTT protocol to do so. Finally, IBM and Eurotech have bought MQTT to the open standards process of OASIS – the Organisation for the Advancement of Structured Information Standards. OASIS is a non-profit international consortium that drives the development, convergence and adoption of open standards for the global information society.

The OASIS standardisation process started in March 2013, with the goal of establishing MQTT as an open, simple and lightweight standard protocol for M2M telemetry data communication. The newly established OASIS MQTT Technical Committee is producing a standard for the MQTT Protocol – together with requirements for enhancements, documented usage examples, best practices, and guidance for use of MQTT topics with commonly available registry and discovery mechanisms.

Although MQTT does seem to be championed by IBM, the OASIS recently called for industry representatives earlier this year to sponsor the formation of its MQTT Technical Committee, and was answered by Cisco, the Eclipse Foundation, Eurotech, IBM, Machine-To-Machine Intelligence, Red Hat, Software AG and TIBCO. The group will take the MQTT 3.1 specification, donated to the committee by IBM and Eurotech where it was originally developed, and work to standardise and promote its adoption it as an open standard.

In defining MQTT standards and making them open for all, this allows its’ use and will hopefully guarantee a future standard allowing interaction with devices from all suppliers and manufacturers who choose to work with it. It’s a standard that holds a lot of promise for the future of an efficient and affordable Internet-of-things.

At the LX Group we have a wealth of experience and expertise in the IoT field, and can work with the MQTT standard, hardware and software to solve your problems. Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group discusses MQTT and how it works for the Internet of Things