All posts tagged: embedded system

LX's embedded systemHave you ever thought about how truly marvellous all the gadgets we have today are? It’s not just the mp3 players, digital watches, e-book readers etc., but even things like traffic lights, airplane guidance systems and even climate control devices, which, even though we hardly notice them, makes everything more convenient and easy for us to go through our daily routines. And what make all of these things possible are embedded systems.

An embedded system is a computer built for one specific purpose, as opposed to a PC which is built for general purposes and can be used for many things (like watching movies, reading email, surfing the net, etc.) One device can have one or several embedded systems. A great example is a car. A car can have one embedded system to control the anti-locking brakes, another to control the automatic four-wheel drive, one to control the heater and air conditioner, and a multitude of other devices. Embedded systems are great for things that just have one purpose, and it is especially great for tasks which are repetitive and have to be precise (such as the anti-lock braking systems.) Equally, embedded systems are applied to transportation, medical applications and fire safety equipment because they can perform their tasks accurately in real-time without any delay and almost without any need for outside input.

Embedded systems have been around for longer than most people realise. For example, one of the first ones was used in the space shuttle, Apollo Guidance System, in the 60s. These were created to reduce the size and weight of onboard computers for the shuttle craft and one of the first and prime examples of integrated circuit use. Of course, as technology advanced, embedded systems became cheaper and smaller, and thus we’re no longer limited to putting them on million-dollar space shuttle, but even things like microwave ovens, water heaters and dishwashers.

Why an Embedded System?

Perhaps many people may think, instead of using a dozen small computers in one device, why not just put one computer to do all these things? Well, perhaps for things with a lot of embedded systems (such as the car) that may be possible, but what about for simple things, like your coffee machine, oven or a digital watch? Adding an entire computer system wouldn’t make much sense, when all you really need for your embedded system to do is tell time, turn itself on in the morning or make sure it stays a certain temperature. It simply makes much more sense to put in a simple, single-function computer.

When deciding on an embedded system, these are usually the top considerations:

Price – A computer used to be something only governments or big companies could own. Embedded systems make it possible for electronics to be affordable and efficient, so that we can place them in virtually anything and everything (yes, even the kitchen sink.)

Size and Weight – Before integrated circuits, no one could even dream of computers smaller than their living room, much less the palm of their hands. Now, we can have embedded systems in things even smaller than our palms, and they continue to become smaller and lighter.

Productivity – An embedded system does only one thing, and it can do it efficiently. For many repetitive tasks, such as the many mentioned previously, this is enough. It’s simply not a good use of resources to have an entire general purpose computer in something that only does one thing. What about that car example? Well, it’s true you could have one PC to control, but it would not only be expensive, but it would be inefficient. If the computer broke down, then you wouldn’t be able to use your car. With embedded systems, if your car’s temperature control broke down, you could still get to where you needed to go (you’d just need to wear shorts and roll the windows down.)

Embedded systems aren’t perfect, though; for example, you’d need a lot of testing to release certain products out on the market (such as medical and life-saving devices) and because it is embedded deep into the product, you couldn’t update it easily. However, embedded systems have certainly changed the course of human development in the last 20 years, and will most likely do so in the next century.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. www.lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWhat is an Embedded System?

LX's Electronics Prototyping

A prototype is a model that designers use to determine the feasibility of a concept or device and to test the development of the device throughout the research and pre-production phases of the product development. The word is made up of two Greek words meaning roughly something like “first impression.” Prototypes are used in many ways, but are particularly helpful and necessary in electronics development and manufacturing. Electronics prototypes are often assembled manually, which is faster and cheaper than creating an actual stamped PCB board and can be more easily modified, but still allows for circuits to be properly assembled and tested.

Proof-of-Concept Prototype

A proof-of-concept or proof-of-principal prototype is a model that is close enough to the envisioned device to establish sufficient certainty that the idea has the potential to do what is intended, before pursuing the task in earnest. Issues that are identified can be remedied long before the more costly and complex research process begins. This can save time and money that could potentially be wasted if it turned out that the conceptual idea is either impossible or is too difficult to make it worth the time and effort.

Prototype Product Evolution

Demonstration prototypes are the next step in the product evolution. Once designers, engineers and investors are convinced that the product is feasible, the prototype serves as a demonstration tool to sell the idea to others. Usually that refers to investors and others with an interest in the feasibility of the concept. In some cases the prototype is required to file for a patent for the device. Demonstration prototypes are generally more advanced and closer to the fully operational device than the concept prototype, but still not fully functional or formed.

Product Development

Once everyone is satisfied that the product is possible, the next stage of product development begins. In electronics, this often consists of the creation of software and control instructions. The research prototype serves as a test bed for the software and may undergo some hardware changes to ensure compatibility with the software algorithms.  Depending on the device, a research prototype may be used to also help develop appearance and physical designs. Once the research is complete, the final product is built in the form of a functional prototype, which as closely as possible mimics the finished product.

Commercial Production

Once the research necessary to build the device is complete, the final process is the commercial production phase. This is when the device is finally made into the fully functioning product that will be sold to consumers. The first iteration is called an alpha prototype. It will be as close to the intended final product as possible in both form and function and serves to identify any issues that interfere with production. Once complete it will be thoroughly tested and if necessary changes to either the device or production process will be made. The next iteration is the beta prototype, which reflects any changes that were made during the first iteration. Once complete the device is put through more grueling trials and testing. Once again, any identified issues are corrected and when complete the pre-production prototype emerges. This is the final prototype before large scale production begins.

Prototype Process

Prototypes are an important part of the process of creating, building and manufacturing an electronic product. Without utilizing prototypes along the way, the process would suffer frequent setbacks that will consume funds needed for the project. The prototypes evolve as new information comes to light and grows along with the idea. Without a prototype, the only way to know if a device will do what is intended would be to manufacture it, which requires a much larger expenditure of time, effort and money, and the finished product may not work at all.

Prototypes are an essential tool in the development of any electronic device because they take a concept that exists only on paper and in theory and transforms it into something that is tangible and actually performs at least some aspect of the envisioned product. Prototypes are considered so important in the electronics manufacturing field that there are entire companies that specialize in constructing them for other designers, inventors and manufacturers.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. www.lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisThe Importance of Electronics Prototyping

Virtual reality allows user to interact with an environment that exists only in a computer

Virtual reality is a term that has been used frequently in sci-fi novels and movies. Virtual reality is a technology which allows the user to interact with an environment that exists only in a computer. Augmented reality, which is one of the newest innovations in the electronics industry, tries at superimposing a range of elements such as graphics, audio and other sense enhancements from computer screens onto real-time environments.

Virtual reality and augmented reality systems go far beyond the static graphics technology and try to assimilate the user’s movement and actions to create complex virtual worlds that can “trick” a person into believing that s/he is experiencing reality. These virtual environments have the capability to revolutionise how we view, interact and use information to perceive the world around us, and embedded technology is powering the future of these systems.

Virtual Reality (VR) is an artificial environment created with a computer and presented to the user in such a way that it appears and feels like a real environment. To experience a virtual reality environment, the user is required to wear special gloves, earphones and goggles, all of which receive inputs from the computer system. The computer continuously monitors and analyses the user’s actions and alters the information fed to the devices the user has worn. For example the goggles, track head movements and respond accordingly by sending a new video input which makes the user feel s/he is in a real environment. The simulated environment can be similar to the real world – for example, simulations for pilot or combat training – or it can differ significantly from reality – such as alien worlds and creatures depicted in Virtual Reality games.

In contrast, the goal of Augmented Reality (AR) is to add information and meaning to a real object or place. Unlike Virtual Reality, Augmented Reality is not aimed at creating a simulated computer-based environment. Instead, it takes a real object or space that the user is viewing, as the foundation, and incorporates contextual data to deepen a person’s understanding of the object. For example, Augmented Reality can add data such as an audio commentary, location data, historical context or similar information that can make a user’s experience of a thing or a place more meaningful. Similarly, AR systems can be used to superimpose images from an X-ray or MRI (Magnetic Resonance Imaging) scanner directly onto a patient’s body to help a surgeon analyse and clearly understand the nature of a fracture or a tumour.

Augmented reality is the next step in Virtual Reality, created by combining information, digital data received from different devices and the internet, to create a surreal world which gets displayed to the user in such an intuitive fashion that the user may not be able to differentiate between the real world and its virtual augmentation.

Creating The Virtual World

Getting the right information at the right time and the right place is the key to the functioning of a VR and AR system. The basic requirements of both VR and AR systems are same – both depend on data generated from user movements and perspective to arrive at the information (text, visuals, sound etc.) to be provided to the user. AR systems and VR systems employ similar hardware technologies but differ in the complexity of the systems used. In general, the devices used in both VR and AR systems can be summarised as below.

Tracking devices: The “input” unit of a virtual system or tracking devices help sense the movements of the user to identify the user’s coordinates in real-time. The requirements for AR in such cases are much stricter than those for VR systems. VR systems use indoor tracking devices to track the entire body actions of a user to “transport” the user to a virtual environment. For example a flight or parachute-landing simulator simulates the movement of the user to display a real-life scene on a screen or a Head Mounted Device (HMD). In the case of AR, the tracking system uses a combination of indoor and outdoor tracking devices to recognize what a user is viewing at a given movement. For example, a handheld device showing information about a building or a piece of art the user is viewing.

Virtual and Augmented Reality with Embedded Systems

Scene processor: VR systems need to process and generate realistic images because they completely replace the real world with the virtual environment for the user. Thus, a complex and high performance intelligent embedded system capable of rendering text, graphics and sound to match user movements is critical in a VR environment. In AR, the virtual images only supplement the real world. Therefore, fewer virtual objects need to be drawn, and they do not necessarily have to be realistically rendered. However, an AR system needs to have the intelligence to interface with a centralised database or connect to a network, internet or GPS (Global Positioning System) to fetch and display the right information to the user. In addition, an AR system tracks the position and orientation of the user’s head so that the overlaid material can be aligned with the user’s view of the world.

Display device: The display devices used in AR may be less complex when compared to VR systems. For example, monochrome or low-resolution display may be adequate for some AR applications, while VR systems need to use full colour high-resolution display systems. Optical see-through Head Mounted Devices (HMD) with a small display device may be satisfactory in the case of an AR system because the user can still see the real world. However, a complex HMD that blocks the user’s view to the real-world is critical in the case of a VR system.

Difference between Virtual and Augmented Reality

  • Immersion

Virtual reality provides a totally immersive environment while Augmented Reality adds information to the user’s existing view of the world.

    • User senses

In Virtual Reality, a user has to be in a controlled environment, a simulator capsule or a head mounted device (HMD) that feeds the user visuals, sounds, motion, sensation and in some cases smell as well.

In Augmented Reality, the user maintains a sense of presence in real world and the information is generally displayed on HMD or a handheld device.

  • Complexity

Virtual Reality systems are complex since it needs to process all details associated with the virtual environment. Augmented Reality systems are less complex but needs to combine virtual and real worlds to provide a rich user experience.

Embedded intelligence

Similar to a central processing unit of a computer, the scene processor forms the core part of a VR or AR system where the data gets processed and results are generated for the user. Embedded systems are playing a vital role in creating advanced, intelligent and affordable scene generators for VR and AR systems. The increase in processing power and miniaturisation of embedded components are paving way to the creation of scene processors with higher processing power yet in sizes that fit inside the palm of the user. The use of embedded technology also supports interconnectivity of similar devices and also ensures connectivity to external systems, networks or internet to give a rich holistic user experience.

Virtual Reality Applications

  • Flight, parachute, vehicle simulation
  • Simulation for space missions
  • Robotics and tele-robotics
  • Sci-fi movies
  • Medical surgery simulation
  • Virtual Reality games
  • Amusement rides

Augmented Reality Applications

  • Pre-operative anatomy imaging of X-ray & MRI scans
  • Virtual HMDs to aid military combat operations
  • Virtual navigation systems
  • Shopping – providing enhanced reviews of goods
  • Sightseeing
  • Entertainment and education – in schools, exhibitions & museums

Conclusion

Though Virtual Reality has been around for some time, the incorporation of advanced embedded technologies is helping researchers improve the quality and control of the system. Augmented Reality, which is a relatively new advancement in electronics, has also scaled new heights with the use of Embedded Technology. The virtual systems of the future can be so advanced in the near future it could even work on the thoughts of the user. The potential of virtual systems are huge, and embedded systems that are powering it reach outstanding levels of interactivity.

About LX Group
LX Group incorporates LX Innovations, LX Design House, LX Solutions and LX Consulting, and is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. They specialise in embedded systems and wireless technologies design.

LX Group offers clients a range of professional solutions designed to take a new product idea from concept through to production and beyond. LX focuses on fully understanding all aspects of a client’s requirements (both technical and business) and works on creating custom-made solutions. LX Group’s expertise in developing electronic products enables a quicker design process and reduces cost in bringing a concept to reality. www.lx-group.com.au

Published by LX Group for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisVirtual and Augmented Reality with Embedded Systems

Factors driving the need for smart power grids

Electric power systems constitute fundamental infrastructures in of modern society. Often continental in scale, electric power grids and distribution networks connect the generating stations to virtually every home, office, factory and institution across the country. Increased bulk power transactions and large scale integration of renewable energy sources are posing challenges to high-voltage transmission systems.Environmental constraints and energy efficiency requirements also have significant effects on the design and operation of power transmission infrastructures. To address these challenges, power grids worldwide are undergoing a revolutionary transition to the so-called “Smart Grid”.

Smart Grids are designed to imbibe intelligent processes and methodologies to the power grids to improve their flexibility, reliability and overall efficiency.The electric power grid can be defined as a large system of high-tension cables that connects the power plants to consumers across a region. The grid is responsible for transmitting the generated power to the end-user. The electricity produced at power plants is usually “stepped up” to high voltages before it is transmitted through the grid. At a substation near the consumer, the power gets “stepped down” to voltage suitable for household and commercial use.

The beauty of the grid is that power can be bought and sold across vast expanses. Since the storage of electricity is very difficult, power grids support an optimal distribution of electricity allowing for a more balanced supply-and-demand equation. Also, minor transmission failures in one section of the grid can also be compensated for by using electricity available in another section of the grid.Due to expanding demand, higher fuel costs and pollution-related issues, there has been a recent push to develop smarter electrical grids that are more efficient, cost effective and robust. The introduction of renewable energy systems such as wind, solar, biomass and geothermal generation facilities also entail the use of complex power management techniques in the grid. Since the power generated from the renewable power systems heavily depend on environmental factors, the power grids need to have sufficient “intelligence” to switch the transmission on/off based on the power generated.

The Smart Grid
The Smart Grid is achieved by incorporating digital technology to power grids to deliver electricity from power plants to consumers in a more intelligent, efficient, and transparent way. The basic concept of the Smart Grid is to add monitoring, analysis, control and communication capabilities to the power in order to maximise the throughput of the system while reducing the energy consumption. As all systems are automated and metered, they track when and how much electricity is used. By analysing and reporting all critical usage and health statistics, Smart Grids help system engineers to better manage loads and effectively cater to power demands.

Smart Grid Architecture
Smart Grid architecture relies on embedded technology to manage an energy system and automatically track usage. The conventional power grid management was carried out manually by disparate teams situated at each section of the grid, i.e. power plant, substation etc.  The information available to these teams was mostly limited to their subsections alone and information about demand and outages were usually communicated through phone calls or fax messages.

In sharp contrast, Smart Grids allow for seamless transfer of information across the entire power grid. Embedded systems deployed at various points of the grid, from power generation to end-user consumption, help in analysing the critical characteristics of the system and also communicate it to other systems attached to the grid to achieve excellent energy management capabilities. Embedded systems are computers that can be integrated or “embedded” into a larger electrical or electronic equipment, to allow the equipment to have the necessary “intelligence” to function automatically. The use of embedded technology also allows the deployment of centralised Smart Energy Management Software to control the power available across the entire grid.

Interfacing with Electrical Appliances
Embedded systems are ubiquitous and are finding its use in almost all kinds of consumer and commercial equipment. Thus, a power delivery network built on embedded technology can far easily be interfaced with such equipment. This can ensure flow of electricity as well as information between the power plant and the equipment. The combined intelligence of the interconnected devices, coupled with automated control systems, can permit real-time power transactions and seamless interfaces among people, buildings, industrial plants, generation facilities and the electric network.

The information received from all the interconnected applications will enable the centralised energy management software to create an efficient power generation and transmission plan. An “intelligent” electric grid will also facilitate the proper delivery of electricity from renewable power systems such as wind, hydro and geothermal power plants that are often located at remote regions, far off from load centres. Additionally, interconnected systems will also enable faster detection of outages, correction of faults and quicker restoration of power supply. This will also improve the reliability of the grid and ensure security of the region as well.



Conclusion
The Smart Grid can be considered as a futuristic extension to the power grid and aims for better and efficient power management and consumption. Intelligent embedded power grids can create value up and down the chain – from efficient production of electricity in power plants to optimal supply and distribution of power to match the usage patterns of the end-users. The use of embedded technology would play a significant role in enhancing the “intelligence” of the existing power grids.

The primary advantage is that the grid can be transformed from an operator controlled and managed system to an “intelligent” automated network that works continuously to match the supply with the demand.  Smart power grids can dramatically improve the reliability, efficiency, and cost effectiveness of electric power delivery systems. Embedded and intelligent power grids is the way forward in ensuring a smarter, cleaner and a well-organised management of energy sources driving future growth requirements.

Published by LX Group for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.   

Muhammad AwaisIntelligence Embedded Power Grids