All posts tagged: group

The panStamp development environment for wireless sensor networks and Internet-of-Things applications is based around compact, low-cost microcontroller boards including a built-in sub-gigahertz radio transceiver, providing the necessary connectivity and processing power to create autonomous low-power wireless sensor and actuator nodes with almost everything contained in a 24-pin DIP module that is compact, low-cost, easy to program and to use.

It’s easy for anybody to get started with the open-source panStamp platform, allowing you to measure almost anything by connecting a panStamp up to some sensors, connecting a small battery, writing some simple Arduino-compatible code and transmitting data wirelessly, providing a convenient solution for any kind of project needing low-power wireless communications or telemetry, such as home automation, energy metering, robot control or weather monitoring. 

The panStamp platform makes it easy and accessible to get started creating wireless sensor networks and other wireless systems for both professional and hobbyist users.

Modules are very easy to program and configure, and they can be plugged into many different kinds of commercially available base boards containing different sensors, actuators and power supplies, or the user can develop their own custom base-board hardware to meet their needs, with all the complexity of the microcontroller and radio hardware contained on the panStamp module. 

Wireless boards run a compact stack and communicate with each other using a simple protocol called SWAP, using the 868 or 915 MHz ISM radio bands, offering lower congestion and longer range compared to 2.4 GHz solutions. The lightweight, open-source SWAP protocol that powers the panStamp radio stack is designed for use with Texas Instruments CC11xx radio hardware in resource-constrained wireless sensor network and machine-to-machine applications, typically consuming only about 7kB of flash and less than 1kB of RAM.

Everything has been designed to perform efficiently, quickly and with good power efficiency with one of the most compact wireless stacks on the market, allowing developers to focus on their applications without worrying about low-level details of the microcontroller and radio implementation. 

However, the platform is all free and open-source, so those details of low-level implementation are available for developers to look at if you want to. The panStamp project provides a complete solution to allow you to build wireless sensor networks that are connected to the cloud – not only microcontroller and sensor boards, but also the communications stack, protocol definitions, network controller and management tools to get your network of sensors up and running and connected to cloud services. 

panstamp2

From the data collection and actuation to transmission, data management, event handling and IP tunnelling, panStamp aims to provide easy connectivity of wireless devices to cloud services and other Internet-of-Things services in a way that is accessible regardless of your technical background.

Most of the core features of panStamps hardware, such as power management, the real-time clock and the RF transceiver are controlled inside the panStamp library, so the user doesn’t have to deal with the 
low-level programming required to control these hardware peripherals. To consider some of the standard base-boards available for use with panStamp modules, a good starting point is panStick, which is a USB-connected motherboard for panStamps. 

The panStick is used to program panStamps, and also acts as a serial gateway from your PC to the wireless network. You simply place a panStamp on the panStick, program the panStamp with the modem application, and plug the dongle into your computer. This is the simplest way to connect panStamp RF networks to any software on your PC, including the SWAPdmt device management tool for SWAP networks and the Lagarto software for cloud service connectivity.

The panStamp shield for Raspberry Pi adds connectivity to panStamp radio networks on the Raspberry Pi via its UART, combining low-power wireless connectivity with the Pi’s Ethernet or 802.11 networking and more powerful computing capacity, providing a gateway from the panStamp network to the Internet without the size or power consumption of a traditional PC. 

This shield essentially provides the Raspberry Pi with an RF “modem”, as well as providing a DS1338 real-time clock with battery backup to allow the Raspberry Pi to keep the current time without power or network connectivity.

The panStamp AVR module is based around an Atmel ATmega328P microcontroller and TI CC1101 radio transceiver, and is fully compatible with the Arduino bootloader and IDE. Developers can create their own programs and upload them to panStamps using the standard Arduino IDE, making the panStamp platform very accessible and easy for everybody to get started with, especially if you have previous Arduino experience. 

The more powerful, advanced panStamp NRG module is based around the TI CC430F5137, which combines TI’s MSP430 low-power 16-bit microcontroller with a sub-gigahertz radio transceiver on the die, providing a neat, single-chip, power-efficient solution for sub-gigahertz wireless sensor networks. 

The panStamp NRG module is fully compatible with the Energia IDE, a port of the Arduino IDE for the Texas Instruments MSP430/Stellaris microcontroller family. This allows the developer to easily get started with software development for these relatively powerful 16-bit, power-efficient microcontrollers with the same ease of use and same language and development environment that will be familiar to Arduino users.

The radio hardware used in panStamps can typically achieve a transmission range of about 200 meters in open spaces at 38400 bps and 0 dB transmission power, using only a small wire antenna. Using higher transmission power configurations, external high-gain antennas connected to the SMA connector available on panStamp boards, or slower bit rates, it is likely that substantially larger transmission distances could be achieved if this is what your application requires.

The Lagarto software platform allows you to monitor and control panStamp devices remotely from your PC or Raspberry Pi, process the data coming in from your network of devices and deliver it out to the network or the Internet using different mechanisms, for example for connectivity to cloud services. Lagarto is an open automation platform for use with SWAP networks, panStamps and other low-power wireless sensor network technologies, connecting SWAP networks to the IP domain and to the Internet. It is a lightweight solution, designed to run on low-power LAN connected platforms such as embedded plug computers and the Raspberry Pi. Lagarto’s extended automation module has the capability to run complex tasks locally and also connect local networks to remote data services. 

Furthermore the cosm, GroveStreams, ThingSpeak and openSense Internet-of-Things web services are currently supported with connectivity to Lagarto out of the box at the present time, with support for new platforms likely to be added in the future.

Also, panStamps are now officially supported in OpenRemote, a powerful open-source home automation software for iOS and Android devices. One of the major attractive features of OpenRemote is the capacity for anyone to create custom graphic layouts for their preferred mobile platforms for free using OpenRemote’s online designer, uploading the generated files to a computer running OpenRemote Controller and have these custom controller layouts on their mobile device interoperable with a wide range of automation hardware including but not limited to panStamps.

Thanks to the open-source nature and low hardware cost of this platform, it’s simple to get prototypes of IoT systems up and running – which also translates to lowering the cost of the system development through to the final product. However if you need any form of guidance from consulting through to end-product manufacturing and support – we can partner with you – finding synergy with your ideas and our experience to create final products that exceed your expectations.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisThe IoT made simple with panStamp

GroveStreams is a powerful cloud platform that provides storage and analytics for the Internet of Things, providing Big Data analytics in the cloud and allowing you to capture, analyse and make decisions on data as it arrives. This essentially provides powerful decision-making capabilities to many users and devices and allows you to easily aggregate, visualise and analyse data arriving from many different sensors and data sources.

The included data-streaming analytics are designed to scale to meet your demand for data, so that your business or organisation can quickly react to changes in the data environment – and changes in the physical sensor environment – as those changes are happening. GroveStreams isn’t just built to allow you react to data, it’s also built to allow your devices to react accordingly by using the open, platform independent, GroveStreams API.

The proliferation of devices that generate data in wireless sensor networks, environmental sensing, home and building automation, and Internet-of-Things applications and systems increases every day, and GroveStreams offers a system that can effectively capture, analyse and react to these emerging Big Data sources in a timely manner, with cloud-based scalability and reliability.

GroveStreams is an open cloud-based platform that any organisation, user or device can take advantage of, with an open API and free accounts for low-traffic hobbyist, experimenter or evaluation users. The platform specialises in capturing, analysing and acting on large amounts of time-series data points and streams, with the ability to manage large numbers of different data streams for each organisation.

Each stream can store over 60 million data points or samples, meaning that a stream of sensor data collected once per second can be logged continuously for just under two years in a single continuous data stream.

The GroveStreams platform provides sample timing accurate to the millisecond, and support for many different data types such as integers and floating-point numbers with user-defined physical units, text strings, dates and times and geographic coordinates, along with actionable data analytics such as user-defined roll-ups of data over time, interval gap detection to allow you to monitor the quality and reliability of sensor data streams as they arrive, data streams that are derived from internal or external RSS feeds, calculations and basic statistical processing on data streams, and derived data streams that are derived from arithmetical or statistical operations on other streams of sensor data.

For example, a stream of temperature data in degrees Fahrenheit may be generated by taking another data stream which receives temperature measurements in degrees Celsius from a sensor and applying a mathematical transformation to this stream, or a stream of energy use data from an energy sensor might be multiplied by another stream containing real-time energy pricing information (cents per kilowatt-hour) derived from an RSS feed, allowing an accurate measurement of accumulated energy cost.

GroveStreams provides for the easy aggregation of large numbers of different data streams, and customisable drag-and-drop HTML dashboarding for flexible, customisable dashboarding and visualisation of your data streams, along with live charts and grids which can be embedded within external Web pages, allowing embedding of data displays within external web pages – although they are still served from the GroveStreams cloud infrastructure.

grovestream2

New components and streams can register themselves automatically and appear in existing dashboards and aggregation analytics as they upload their initial feed data, minimising the need for difficult configuration of new components and streams to connect them into existing dashboards or analytics.

All components and streams provide their own RSS feeds, and RSS feeds can be added to your custom dashboards for viewing within the dashboards. It is also possible to configure sensor-driven, data-driven event monitoring with customisable HTTP call, email or SMS notifications – in response to sensor readings and data values, or in response to time-series trends and statistics derived from your data.

GroveStreams also provides Maps functionality, allowing you to spatially map your data from networks of devices that are equipped with GPS or other capability for location awareness. Distances between devices, speeds, and locations can be tracked and mapped, as well as being subject to all the processing techniques applicable to other data streams. And by providing user role-based security, with public/private web UI settings, you can make your organisation accessible to only your users or also to anonymous guest users, with the ability to set guest access rights to control the way that public users work with your data.

Futhermore a RESTful API is provided with almost all the functionality of GroveStreams exposed out via the public API, including fine-grained API access security. Basic examples to get you started with the API are provided for use with Java, Python, and even for use with Ethernet-enabled Arduinos, allowing you to easily get started with cloud data connectivity from your sensors and physical devices.

A fully browser-based user interface is provided, entirely in HTML without plugins such as Flash, allowing flexible, convenient use of the browser interface across all mobile devices such as smartphones and tablets. GroveStreams can even be re-branded as your “own” application provided to your commercial customers, with your own look, feel and brand identity – while all the cloud infrastructure and hosting under the bonnet is handled by GroveStreams.

GroveStreams is free for small users. Large users will only be billed for what they use (the number of transactions, the number of streams, etc). Once a user’s account exceeds the free metric amounts, they will be required to register a credit card with their account. Billing metrics are constantly gathered and can be monitored in an organisation owner’s account page. For users who aren’t organisation owners, it’s free.

Anyone who needs to collect large amounts of time-series data, monitor it, analyse it and react to this data or data from other devices quickly could benefit from connectivity to the GroveStreams service. Whether you want to monitor one data stream from a single source or many more streams from many sources, GroveStreams is likely to be useful for many different users, including utilities, sensor/device driven organisations or businesses that would benefit from near-real-time sensor data collection and analytics in the cloud. With accounts provided completely free for small-scale users, GroveStreams is also an attractive and accessible platform for electronics hobbyists, open-source enthusiasts and Arduino users looking to get started with a cloud service for data storage, analytics and visualisation for networks of Internet-of-Things sensors and devices.

And thus the possibility of harnessing the Internet of Things is made possible once again by a new platform with many possibilties. Here at the LX Group we can partner with you – finding synergy with your ideas and our experience to create final products that exceed your expectations.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisReal-time data analysis with the IoT and GroveStreams

The Axeda Machine Cloud platform is a secure and scalable cloud platform for connected products, machine-to-machine and Internet-of-Things networks which is backed up by professional, commercial support and a growing library of technical content and resources.

This versatile platform enables system integrators, solution architects, and developers to quickly and easily connect, manage and innovate powerful machine-to-machine systems, connected products and IoT applications, potentially faster and at a lower cost than with internally built solutions.

Covering a wide spectrum of areas, the Axeda platform addresses the complex requirements that are often invisible but vital to overall success, providing an end-to-end M2M solution, and not just the application user interface that your end-users see. The Axeda platform enables you to connect and communicate with any wired or wireless asset, innovating with M2M and IoT connectivity for connected product solutions.

As part of the Axeda platform, their “Machine Cloud” service includes M2M and IoT connectivity services, software agents and toolkits that enable you to establish connectivity between your devices or assets and the Axeda platform while allowing you to choose the communication methods and hardware that best suit the needs of your IoT solutions. Thus you can connect to any product using any device over any communications channel including cellular networks, WiFi, satellite, or any form of Internet connectivity, for any application.

Axeda’s M2M connectivity services include multiple types of solutions, covering different classes of devices or assets that you may need to connect to. Axeda firewall-friendly agents are software agents that run on Linux or Windows and install directly on your asset devices (if equipped with these operating systems) or on a gateway computer on your network that is connected to your assets, providing user-friendly cloud service connectivity out through firewalls without difficult firewall administration.

Working with the platform is made easier by the supplied Wireless Agent Toolkits – Java or ANSI C libraries for embedding Axeda connectivity into your devices, compiled into your own software and executed on a wide variety of embedded computer hardware platforms. These different choices offer a great deal of flexibility in getting the Axeda platform operating with your existing hardware, software and networks.

The Axeda Machine Cloud supports the open MQTT protocol, which is becoming increasingly popular and important in Internet-of-Things applications. Axeda Ready gateways support MQTT networks right out of the box, and can listen to any MQTT broker, allowing for support of local MQTT-based sensor and device networks as well as connectivity between MQTT device networks and the Axeda machine cloud.

For support of other protocols, Axeda’s Device Protocol Adapters connect to many different IoT message protocols in common use today, and these device communication servers can be extended with custom “codecs” to support new protocols, translating the native communications protocol(s) of your device or network into a form that the Axeda platform can understand and process.

The Axeda Ready program broadens the device options available to consumers, allowing you to choose the right communications technology for your Internet of Things applications. Axeda Ready is a technical compatibility approval program for communications devices and modules for embedded and machine-to-machine communications, ensuring device compatibility with the Axeda platform, speeding time to market for your designs that are aimed at use with the Axeda platform, ensuring accurate and secure data communication, and creating useful expectations of technical support and compatibility when approved hardware is used with the Axeda platform.

Futhermore maintenance and control is simple with the Axeda Wireless Console, which enables users to manage their connected assets, devices and SIMs from a single machine, eliminating the need to integrate with multiple separate platforms. Using the Axeda Wireless Console allows for easier activation and deactivation of device SIMs, better management of rate plans and traffic, and real-time configuration of alerts and alarms from remote assets.

By making SIM data available to the Axeda rules engine and APIs, developers can program logic that uses SIM billing and usage data in machine-to-machine applications to configure device behaviour and adjust plans on the fly, minimising network costs whilst also keeping the communication available when it is needed.

Axeda’s advanced M2M cloud service allows you to easily get started managing connected products, building and deploying IoT and M2M applications in confidence, backed up by Axeda’s own robust, secure and scalable data centre infrastructure, with professional operations and customer support.

Their on-demand cloud service is reliable, secure and professionally supported, allowing reliable deployment of your IoT applications without the challenges and overhead of administering and implementing the technology and hosting infrastructure yourself.

Axeda2

Axeda provides a pay-as-you-go model that minimises risk, rapid deployment to help you realise a relatively fast return on investment, and rapid and easy implementation to reduce the difficulty of initial implementation of your system. Axeda offers much lower upfront capital investment, with an annual subscription to their service removing a need for investment in your own servers and infrastructure.

You can focus on the business side of Internet-of-Things applications, without the need to purchase, maintain and support server infrastructure yourself.

Axeda’s Internet-of-Things cloud platform promises faster time-to-value, since your solution can be deployed more rapidly on their server infrastructure, without having to first put that infrastructure in place yourself.

You can host your own applications that you build and deploy on the Axeda Platform at Axeda’s on-demand centre, simplifying the maintenance and administration of your complete M2M and IoT solutions. Axeda offers enterprise-grade security, availability, and scalability, so you can rely on their secure and scalable infrastructure built on high-quality hardware and software investments and their operational expertise, without worrying about it yourself. Ongoing administration is performed by experts in the Axeda application, networking, security, hosting, data protection, and database administration.

As you can see, the Axeda platform offers another option in the growing cloud-based IoT infrastructure market, and if this meets your needs we can work with you to bring your product ideas into reality. If you have a great prototype or idea – and need to take it to the market, our team of engineers can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisAxeda – the Cloud Platform for IoT and M2M

The new Wi-Go system from Avnet is a complete development, prototyping and experimentation platform aimed primarily at wireless data acquisition, wireless sensor networks, automation and Internet-of-Things applications – based on the Freescale Freedom Development Platform for Freescale Kinetis microcontrollers.

Avnet Wi-Go offers designers a complete solution for developing real-world IoT applications by combining Freescale’s Xtrinsic sensor technology with a powerful Kinetis-L microcontroller and an embedded Wi-Fi module.

The Wi-Go system adds Wi-Fi capability to the Freedom platform and includes a built-in 800 mAh lithium-polymer battery which can provide up to days of power for portable, wireless data acquisition from the platform’s on-board suite of sensors, along with an on-board flash memory IC to facilitate data storage and provide additional storage for things such as complex webpages which may be served up from the Wi-Go board, providing a powerful and flexible wireless sensor platform at a low cost.

To keep initial cost low, the Avnet Wi-Go is a two-board set comprised of a Freescale Freedom development board mated to an Avnet Wi-Go module. No other components arerequired to get started developing your own Internet-of-Things products and devices. The Freescale Freedom development platform is a small, low-power, cost-effective evaluation and development environmenbt aimed at quick prototyping and demonstration of applications of the Kinetis microcontroller family.

The Kinetis family offers an easy-to-use mass-storage device mode flash programmer, a virtual serial port and classic programming and run-control capabilities. The Wi-Go wireless accessory module extends this platform with a powerful suite of sensors, integrated battery and USB charging system, and wireless networking to meet an increasing demand for wireless sensor systems, portable data acquisition and connected, battery-powered Internet-of-Things applications.

The Wi-Go platform’s flexible sensor suite includes Freescale’s MMA8451Q accelerometer for 3D acceleration sensing, the MAG3110 low-power digital 3D magnetometer sensor for magnetic heading sensing, the Xtrinsic MPL3115A2 barometric pressure sensor, which provides pressure, altitude and temperature information, Vishay’s TEMT6200 ambient light sensor for light level sensing, a MAX8856 and MAX8625A for the power supply subsystem, including battery monitoring and smart charging, power management and efficient buck-boost regulation to maximise the system’s battery life.

These sensors are combined with the Kinetis KL25Z128VLK4-Cortex-M0+ microcontroller, operating at up to 48 MHz with 128 kb of flash and 16 kb of SRAM along with a full-speed USB controller and support for the sophisticated and open-standard OpenSDA USB serial and debugging interface, alongside Murata’s LBWAIZZVK7 Wi-Fi radio module, which is based on the Texas Instruments CC3000 SimpleLink 802.11b/g chipset.

LX1

 As the WiFi communication hardware of the Avnet Wi-Go system are based on the CC3000 chipset, it supports TI’s SmartConfig network configuration tool, allowing easy configuration and provisioning of the wireless network settings for new Wi-Go devices on the network simply by using the SmartConfig app freely provided by TI on a smartphone connected to the wireless LAN.

 The Wi-Go platform is also equipped with a S25FL216K low-power, 2 megabyte serial flash memory, flexible power supply options, a capacitive touch “slider”, an RGB LED and three discrete user LEDs as input and output devices for user interaction. The Wi-Go board also provides expansion I/O pins in a form factor that accepts Arduino-compatible “shields”, making it compatible with a rich ecosystem of third-party expansion hardware.

 Example code is provided to set up a filesystem on the flash memory or to communicate with the flash in binary mode, along with other working code examples and libraries for communication with each of the other sensors, peripheral devices and WiFi radio present on the board.

 Reference code and examples are provided to implement full end-to-end Internet-of-Things applications with Web services such as Exosite – for example using the TI SmartConfig app to configure wireless network connectivity, using cloud services client connection code to send data up to Exosite on the web, and streaming this data over the Web to an Android application which performs fusion of different sensor data and displays its results. It’s easy to get started logging sensor measurements on a Web service, for example, or to use a Web service to remotely select the colour of the RGB LED on the Wi-Go board.

A free cloud-based compiler is provided with each development board purchased, along with a free Freescale Xtrinsic sensor fusion toolbox application and a free connection to Avnet’s Exosite cloud services for up to two of your devices. A series of several videos is also offered by Avnet, outlining the capabilities of the Wi-Go platform in order to assist designers in creating Wi-Go based wireless applications.

 These videos cover topics such as Xtrinsic sensor fusion on the Wi-Go platform, cloud capabilities of Wi-Go, and Web server and network configuration for Wi-Go. Finally, the Wi-Go platform is open-source, and designers have access to all design files and source code, which is an attractive feature for engineers looking to reduce the time to market for products and systems developed for Internet-of-Things applications.

 And that is always one of the main goals of IoT product development – time to market. If you have a great prototype or idea – and need to take it to the market, our team of engineers can help you in all steps of product design, from the idea to the finished product. To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

 LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWireless data acquisition with Avnet Wi-Go
Wearable computing is in the news again, with new smart watch offerings from Samsung and others, Nike cutting back their development of wearable technology, and existing and emerging offerings such as Google Glass, the Pebble smart watch and Nike’s FuelBand fitness monitor also attracting growing interest in the media.

But can this diverse range of products from different manufacturers interoperate effectively with each other and with other devices? Are proprietary devices and protocols user friendly in wearable applications, or are open standards and interoperability between different vendors important for success of the wearable computing industry? Let’s look at the need for standards in wearable computing, and the pros and cons of open standards in the context of wearable computing. 

Many companies, including smaller startups as well as major international brands such as Google and Nike are attempting to find leading positions in the emerging consumer market for wearable computing. For example MapMyFitness, a company developing an online platform for use with wearable health and fitness data-logging, is aiming to support connectivity with some 400 different devices. 

Furthermore they’re one of 10 app makers partnering with Jawbone on its recently announced Up wrist-monitor platform which also aims to attract developers – and that’s just the offering from one small company in the wearable-computing market, focussing on health and fitness devices, such as heart-rate monitors and shoe-mounted exercise loggers. 

This type of wearable technology accounts for one of the most rapidly growing sectors of the wearable computing market. But such interoperability with a large number of different devices assumes that open standards and protocols, such as Bluetooth Low Energy and ANT, are widely adopted across the industry. 

Although some vendors such as Google are likely to have good support for open standards and strong utilisation of open-source operating systems such as Android, other industry players such as Nike or Apple are much less likely to concern themselves with openness and interoperability if they can bring a product ecosystem to market which “just works” for consumers whilst using closed, proprietary protocols and standards.

Right now, much of the data collected from wrist monitors such as Jawbone’s Up, as well as heart-rate monitors, sleep-pattern sensing devices, bicycling cyclometers and more exist in digital silos. It’s not easy to look at the different collections of data at the same time to determine, for example, if a series of poor running performances might have been related to several nights of fitful sleep. 

But if open standards are used, then correlation and fusion of the data from different sources in the same place is possible, allowing more interesting conclusions to be derived from the data. Because of the size, weight, battery life and user interface constraints associated with wearable devices, such devices tend to use relatively low-power microcontrollers – not relatively powerful CPUs like those found in mobile phones, and tend to use minimalist sensors, memory and storage, meaning that each device tends to be optimised to do only one particular task and do it well, unlike general-purpose PCs or smartphones. 

Although a Pebble smart watch enhances your user experience when using your smartphone, it’s not a fitness data-logging device – it’s a separate device that fulfils a different basic set of functionality. However, there is still some potential for value in interoperability and data exchange between these kinds of devices. 

Wearable electronic devices of this kind can be most useful when multiple devices are combined into networks – for example, a smart watch for at-a-glance message display, a heart rate monitor and a pedometer sensor, all networked back to a central smartphone. But are the full spectrum of wearable devices that you choose to use going to all be compatible with the smartphone you use? 

Samsung recently unveiled its first serious piece of wearable computing technology, the Galaxy Gear, although the device is currently only compatible with the Galaxy Note III and the third-generation Galaxy Note 10.1. Although the Sony SmartWatch 2, for example, is widely compatible with Android devices, is it likely that the rumoured Apple iWatch will offer compatibility with Android? Probably not. 

lx2

On the other hand, it is likely that choosing multiple different devices from the same manufacturer – if the types of sensors and devices you want to use exist – is likely to “just work” with the best possible compatibility and reliability, even if this means promoting closed, locked-in systems and proprietary protocols which may be used. And many non-technical customers just want consumer electronics that “just works” without any real care for open standards.

Today, smart watches and fitness bands can track physical activity through the most basic metrics, such as step counting. With more sophisticated accelerometers and algorithms, devices such as the Nike FuelBand can make a guess at what kind of activity you’re actually doing. 

Some devices, like the Basis watch, track heart rate. Combined with a smartphone and/or smart watch, multiple different devices like this comprise a personal, body-worn wireless sensor network of sorts – and open standards are obviously valuable in realising the true flexibility and power of such a network. You can use RunKeeper on your iPhone, for example, or Android phone or via any web browser, but you can’t get RunKeeper’s data to sync with MapMyFitness. 

And if you’re using a Nike FuelBand, you can’t translate proprietary Nike “fuel points” into data that’s usable by other fitness-tracking apps. Wouldn’t it be nice if this data was openly portable and easy to integrate into other fitness applications?

Fragmentation of compatibility of hardware and software between different versions of operating systems such as Android and wearable computing devices is also an emerging concern that should be considered, to deliver the best possible user experience. A “companion app” is an application that runs on the smartphone which communicates with the smartwatch or other wearable device in a personal network. Sometimes these apps are available on both major platforms, but sometimes they aren’t. 

Even if they are, it often means that a person has to purchase a version of the app for each platform. Companion apps may be increasingly going away, replaced by what amount to “plug-ins” that install into the app that runs in the device’s own app, along with a piece that’s copied onto your smart watch or other wearable device. 

But this approach just creates an entirely new microclimate inside each operating system’s ecosystem, which is not ideal. Now smart watch apps must be downloaded into another app which takes care of communication between the two in a cross-platform environment, adding complexity. When we bring Samsung into the equation it gets even worse; now you’ve got to have specific hardware for the peripheral to even work! On paper it may work great, but in reality this is a user experience nightmare, and careful design for user-friendliness along with cross-platform compatibility is important here.

Privacy, of course, becomes a big concern that many people have when it comes to omnipresent wearable cameras recording video at all times, or wearable devices gathering intimate data on what your body is doing, in health or fitness datalogging applications. 

At the same time as technical standards and protocols are developed and standardised, society needs to be developing and thinking about social and legal standards to deal with the new technology – to protect the privacy of health data, and to deal with the presence of omnipresent photography and recording in public spaces using devices such as Google Glass without over-the-top hatred or suspicion of the technology due to the privacy concerns. 

Device manufacturers can also play a role here, in enabling public understanding and acceptance of what the technology does and does not do, and what measures are put in place to manage the data with good standards of privacy.

Nevertheless the wearable electronics market is growing, and there are many opportunities if the designer can hit the sweet spot of creating a genuinely useful and usable product. And if you have the idea, and looking for a partner to help bring that idea to a finished product – we’re ready to work with you for your success. 

As experts not only embedded hardware but also full idea-to-delivery of products, our consultants and engineers can work with you to meet your goals. The first step is to join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisStandards and Wearable Computing

Let’s take a brief look at the FreeRTOS operating system, and the FreeRTOS+Nabto platform. It’s the market-leading, real-time operating system (RTOS) for embedded systems that is not only open-source, high quality and well supported – but also provides strong cross-platform support across 33 different architectures, access to high-quality training and information, pre-configured example projects and a growing user community.

Furthermore FreeRTOS is available in a high-reliability TUV-approved version for demanding, safety-critical applications – providing peace of mind to commercial users, with strict configuration management to ensure high quality development of the FreeRTOS project’s code, and FreeRTOS is free to embed in commercial products without any requirement to expose your proprietary source code.

By combining the FreeRTOS real-time operating system with the patented Nabto peer-to-peer remote access communication platform for embedded systems, you can harness a simple and secure HTML5 or native application interface for your end users, along with an adaptive and flexible data-acquisition interface for data collection, central analysis and monitoring systems.

The resulting combined system brings simplicity, platform independence, inclusive cloud hosting services and entry level access to Nabto’s Internet-of-Things solution together into an interesting easy yet powerful real-time platform for use with embedded Internet-of-Things systems.

FreeRTOS+Nabto is a small piece of C code that, when integrated into an embedded networked device, allows that device to be remotely accessed and controlled through a rich web-based or native iOS or Android app-based interface or intelligent data acquisition system – consuming less than 23 Kb of flash in a typical system including both the FreeRTOS kernel and the IP stack.

Each device has a unique URL, allowing the device to be automatically located across the Internet, and the Nabto technology allows secure, authenticated and bandwidth-efficient peer-to-peer connections to be established even when the device is deployed behind a NAT firewall which removes the complexity of configuring firewall penetration for embedded Internet-of-Things devices in enterprise environments. 

FreeRTOS+Nabto enabled devices can also be accessed over the local network in the absence of Internet connectivity. As FreeRTOS+Nabto is a new, simple, cross-platform and fully integrated solution for the Internet of Things, it provides a cloud infrastructure that enables IoT devices to be accessed through a rich user interface running in a web browser or a smartphone app – requiring the device itself to only supply the live sensor data and no other components of the interface, supplying this data via UDP in a lightweight way.

Free RTOS

This means that the embedded devices themselves can be kept simple, power-efficient and lightweight – the use of cloud technologies means small FreeRTOS+Nabto devices can be given rich user interfaces without the need for any on-board filesystem or a TCP/IP stack, only relatively lightweight UDP/IP networking support.

These rich user interfaces can be accessed locally via the LAN or anywhere in the world via the Internet, from a computer, tablet or smartphone, with local device discovery and unique and resolvable URLs for each FreeRTOS+Nabto device provided over the chosen domain (LAN or Internet), solving the traditionally difficult problem of naming and uniquely identifying devices in large Internet-of-Things networks.

Using FreeRTOS+Nabto you can connect to a remote IoT device wherever that device is at the time of the connection simply by knowing the device’s unique URL, and being securely authenticated as a legitimate user, with the system handling all the networking, routing and encryption necessary to securely network your IoT devices, address and find them – across the LAN or across the Internet.

All you need to do as an application developer is compile the source code, write a single interface function, and make use of the FreeRTOS+Nabto fully managed cloud service. Instructions and tutorials are provided to make this easy for you, with a strong community of users and the availability of professional support for commercial customers.

Different web content can be served to different geographic regions, moving the burden of internationalisation from the embedded device into the cloud, allowing for even smaller code size and simpler more maintainable designs. All the network routing and protocol details are encapsulated within the FreeRTOS+Nabto product and its inclusive cloud hosting service, enabling FreeRTOS+Nabto to interface with the user’s application source code through a single C function, and enabling FreeRTOS+Nabto to be accessible to users and developers without an advanced level of existing networking expertise.

The FreeRTOS+Nabto platform includes a fully documented live online example that is running on a small real-world microcontroller and a separate project that uses the FreeRTOS Windows simulator. The Windows simulator version creates live virtual FreeRTOS+Nabto nodes on a local network to allow FreeRTOS+Nabto to be evaluated quickly and easily and without the need to purchase any specific hardware.

Although the simulator differs from FreeRTOS running on real hardware in that it does not exhibit real-time behaviour, the ability to set up a development environment, create and experiment with FreeRTOS+Nabto Internet-of-Things applications on a local network before purchasing any specific hardware is still a very useful and attractive capability.

Thanks to the open nature of FreeRTOS, it can be used in a wide range of embedded hardware and become part of your new or existing IoT products. As experts not only embedded hardware but also full idea-to-delivery of products, our consultants and engineers can work with you to meet your goals.

The first step is to join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisFreeRTOS – the cross-platform OS for Embedded Hardware

RIOT is a relatively new operating system specifically aimed at applications in lightweight embedded systems, wireless sensor networks and Internet-of-Things applications. Billed as “the friendly operating system for the Internet of Things”, RIOT is competing with similar offerings such as TinyOS, Contiki and embedded Linux.

This may sound complex, however RIOT is aimed at developer friendliness, allowing you to program like you are used to – using standard programming languages such as C or C++, with standard compilers and tools such as gcc, gdb and valgrind, without the developer wasting time having to learn new or complex development environments.

As a real-time operating system that supports C and C++ development, multithreading and a high degree of modularity, RIOT offers all this with a very small, lightweight footprint that is well suited to use with small microcontrollers with limited memory and resources available.

Thus RIOT is aimed at minimising the learning curve needed for embedded programming whilst also being convenient and accessible to developers with established non-embedded programming experience.

The origins of RIOT can be traced back to 2008, when it was originally forked from the output of a German research program called FeuerWhere, that was dedicated to monitoring the location, safety and environmental conditions of Berlin firefighters working in emergency situations.

After being rebranded and expanded, RIOT was released to the public as an open-source project. RIOT is aimed at bridging the gap between fully-fledged Linux operating systems and existing solutions like Contiki and TinyOS that are aimed primarily at wireless sensor networks. The key design goals of RIOT are memory efficiency, energy efficiency in battery-powered devices, modularity and a developer-friendly programming interface.

RIOT is free, open-source software released under a LGPL license, meaning you can freely re-distribute and modify the software. RIOT is a publicly available community project, with an active community of users and developers online where you can learn more about RIOT, get help with writing an application for RIOT from other users and developers, and participate yourself and contribute to open-source kernel development or the integration of support for new platforms, microcontrollers and peripheral devices.

Implementing systems with RIOT isn’t difficult, due to the numerous supported embedded platforms, including the NXP LPC1768, the Texas Instruments MSP430, ST Microelectronics’ STM32 32-bit ARM family and other Cortex-M3 and Cortex-M4 devices, as well as common x86 PCs and x86 embedded systems.

The hardware dependent code is reduced to a minimum and abstracted from the kernel itself. For users that are more familiar with non-embedded programming and software development, you can start with the native port of RIOT, allowing you to run RIOT inside a process on Linux or OSX.

This eases the development and debugging of both RIOT itself and the projects you are developing that run on top of RIOT, allowing you to analyse, develop, test and debug your software with familiar, open tools and platforms such as gdb and valgrind, and to create virtual testbeds of multiple instances of RIOT running on a virtualised embedded hardware platform, running simultaneously and networked together with a configurable network topology, using only your PC.

After development and testing of your code on the native port and using this virtualisation capability, it can easily be deployed to your real embedded devices. Integrated system-on-chip devices containing integrated microcontrollers and radio transceivers on a single chip, such as TI’s CC430F6137, can be used, along with development boards and platforms such as the mBed, ScatterWeb MSB-A2, ScatterWeb MSB-430H, Memsic Telos-B, Texas Instruments’ eZ430-RF2500 and EZ430-Chronos.

You can write your code once, and easily compile and deploy the same code for both 16-bit platforms such as the MSP430 and 32-bit platforms such as ARM.

RIOT is specifically designed with features that are aimed at lightweight embedded devices for wireless sensor networks and Internet-of-Things applications, including very efficient memory and resource use, reliability and robustness in embedded applications running for long periods out in the field without maintenance, a real-time kernel with very low interrupt latency, priority-based scheduling and a tickless scheduler, high energy efficiency, strong code-footprint flexibility and multi-threading with very low threading overhead – making RIOT well suited to the smaller things in the Internet of Things.

RIOT includes core support for IPv6 6LoWPAN (RFC6282 and RFC6775 compliant), UDP, TCP including 6LoWPAN header compression, RFC6550/RFC6719-compliant RPL, and CCN-lite for content-centric networking support.

Furthermore the system includes high-resolution and long-term timers, which is important for embedded applications where timers may need to be running constantly in a device that is deployed for months or years without being rebooted. Other useful tools and utilities are built in, such as support for SHA-256 and Bloom filtering. RIOT includes wiselib built-in, which is a generic C++ algorithm library for heterogeneous, distributed, embedded systems, including algorithms for routing, clustering, time sync, localisation, security, and other common functions.

LX2

RIOT includes many built-in drivers for hardware peripherals that allow you to get started with useful hardware applications right out of the box. Some of the supported hardware peripherals include the CC2420, CC1100 and AT86RF231 radio transceivers, the Sensirion SHT11 humidity and temperature sensor, the LTC4150 battery charge/discharge counter, and many other sensors including accelerometers and ultrasonic rangefinders.

Thus with your product needs identified, RIOT can work with a wide range of hardware and base MCUs to form a complete product without “re-inventing the wheel”. If this is of interest, or you need guidance for any or all stages of product design – the first step is to discuss your needs with our team of experienced engineers that can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisRIOT – the friendly OS for the IoT

The Pinoccio platform is based around the Pinoccio “Scout” board – a small, inexpensive microcontroller development board based on the Atmel ATmega256RFR2 microcontroller with built-in 802.15.4 2.4 GHz radio, aimed at quick and easy development of wireless, mesh-networked systems and projects without worrying about common challenges such as efficient battery power management, FCC certification and mesh networking protocols.

This hardware offers an integrated Web platform and API so you can easily get started talking to the Web with your project right out of the box, and a built-in lithium polymer battery on every board that is recharged via the same micro-USB port used for programming, with a battery runtime from days up to over a year depending on the software configuration and how the microcontroller and radio are used.

Pinoccio aims to provide an inexpensive but powerful, FCC-certified, power-efficient, mesh-networked and Internet-ready platform for easily accessible Arduino-style development, wireless sensor networks and Internet-of-Things experimentation.

A network of Pinoccio nodes are connected together via a lightweight 802.15.4 mesh network, using the 802.15.4 radio incorporated in every board to network with any other board that shares its Personal Area Network (PAN) ID.

At one or more nodes in the network, the Pinoccio node is equipped with a Pinoccio Wi-Fi board, based on the Gainspan GS1011MEPS 802.11 WiFi module, that connects the 802.15.4 mesh network to your wireless LAN. This means that every Pinoccio node is connected to the LAN and to the Internet, but with a substantially cost and substantially lower power consumption than would be needed if every node in the network was equipped with an 802.11 wireless LAN chipset.

The ATmega256RFR2 draws less than 20mA of current with its microcontroller and RF transmitter running during active transmission – about 10% of the current consumption of a typical Wi-Fi device. The ATmega256RFR2 can be put into sleep states with far lower power consumption as well, with “wake-on-radio” capability to wake up the microcontroller when the wireless network indicates.

With a WiFi connection on at least one node, every Pinoccio board in the mesh network is connected to the Internet. Routing between nodes is supported, so if board A and board C are out of reach of each other, but they can both reach a board B, then B will route packets for A and C to reach each other.

Even if one of the Scouts is out of WiFi range, the others will route its data up to the Web. Pinoccio uses a lightweight mesh networking stack by default – not ZigBee, for example, although there is no reason why advanced users can’t deploy a ZigBee stack on the Pinoccio hardware if they wish.

This coordinator-less mesh network stack is a lightweight alternative to coordinator-based network architectures. Several network configurations are possible, including the traditional coordinator/router/end-node, as well as a completely decentralised peer-to-peer mesh network with routing.

All Pinoccio Scout nodes can be programmed wirelessly, over the air, in a way that is fully compatible with the Arduino IDE – each node in the 802.15.4 network simply appears, with the Pinoccio networking software installed, as a virtual Arduino-compatible serial port in the Arduino IDE.

Without WiFi connectivity, however, users do still have the option of programming each board directly from a PC, via the USB port, just like any Arduino-compatible device, and more advanced users can talk to the chip via traditional hardware interfaces like ISP and JTAG.

You can have your Pinoccio boards scattered all over an area on a wireless mesh network, each doing their thing, and when you need to update the code on one, some, or all of them you can just do so wirelessly from your computer.

If you have Pinoccio boards within an installation, which are difficult to get to, you can easily update their software over-the-air, post-installation, offering a level of convenience that is hard to achieve with other microcontroller development platforms.

You can update a range of boards by listing several of them, or send an update to all boards in the network at once, sending out a single update broadcast. A single update could be sent out to 100 Pinoccio boards if they all need to be updated, and they would all receive the broadcast and update themselves.

The real value of the Pinoccio platform doesn’t just come from the Pinoccio Scout boards, but from the entire stack – from the physical hardware to the API and Web service and back. This includes features like over-the-air firmware updates, optimised mesh networking and the ability to easily move data between multiple Pinoccio boards across the mesh network, to the Web and back again.

LX2

Along with easy routing, discovery and beaconing, provisioning a new Pinoccio WiFi bridge node to the larger Web, and the use of low-bandwidth-friendly protocols like MQTT, Pinoccio is a platform that provides a high level of openness and interoperability.

Pinoccio is aimed at being very easy to use, power efficient, Arduino compatible, and completely open source, providing a complete end-to-end ecosystem for building the Internet-of-Things, but with open standards and without proprietary lock-in.

The Pinoccio API completes the last mile between your network of Pinoccio hardware and the Web, allowing you to send and receive messages between your board and the API. However, using the Pinoccio API is totally optional – you own your data, and you can run your own web server to talk to your Pinoccio devices if you wish. Every Pinoccio board can have its own REST-based URL, and it can respond to HTTP POST and GET requests, with the 802.15.4 mesh network and the WiFi bridge doing all the routing for you.

Pinoccio aims to support websockets and webhooks, allowing easy connectivity with Web services, and saves and logs all the data pushed to the API from your devices.

Unlike some other options on the market such as Electric Imp, Pinoccio offers a pre-baked end-to-end platform and Web service with a tightly integrated web-hardware experience to allow everybody to easily, quickly get up and running with a network of devices talking to a Web service – without locking you in and forcing you to only use their servers and Web services with their hardware.

The Pinoccio Scout is open-source hardware – you can download the hardware schematics, board layout and bootloaders freely. Pinoccio strives to use open, industry-standard protocols that are standardised by groups such as IETF and OASIS where possible.

Pinoccio currently uses MQTT as the core messaging protocol for the Pinoccio API on top of Atmel’s Lightweight Mesh Protocol and the IEEE 802.15.4 MAC and radio physical layer, and is considering moving towards 6LoWPAN and RPL in future once these standards are more mature and more work is done in this area in the IETF working group.

One vision of future work that the Pinoccio team has is to have each board accessible from the Internet with a unique IP address, using IPv6/6LoWPAN and a WiFi bridge at one node. Shying away from non-standard protocols, Pinoccio supports HTTP and MQTT-S (MQTT for Sensor Networks) out of the box – but, again, without locking you into any particular choices, if you’re willing to put a bit of work in yourself to implement other protocols.

Pinoccio has good security capability available in every part of the network stack, which is attractive for automation networks and Internet-of-Things applications. The ATmega256RFR2 microcontroller has hardware-based AES128 encryption, along with a true hardware random number generator.

It’s simply a matter of defining a shared secret in your code to enable encryption for the entire mesh network. With the support for TLS sockets in the Pinoccio WiFi module, complete encryption is supported from the device to the Web.

Although still in the beta stage, the Pinoccio system holds great promise as an inexpensive and open mesh networking system which could be applied to new or existing IoT-enabled products.

If this is of interest, or you need guidance for any or all stages of product design – the first step is to discuss your needs with our team of experienced engineers that can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisPinoccio – an upcoming Mesh Networking Platform

7 April 2014

australian-small-business-champion-2014

FOR IMMEDIATE RELEASE 

1 of 1

LX Group named the Champion Professional Services

2014 Australian Small Business Champion Awards

 LX Group from Eveleigh has been named Champion Professional Services at the Australian Small Business Champion Gala Dinner and Awards Ceremony held on Saturday 5th April 2014 at The Westin Sydney, with over 900 guests in attendance.

The Australian Small Business Champion Awards is the only national recognition program for Australian small businesses.

The program aims to recognise outstanding Australian small businesses and encourage high standards of excellence in small business practice.

“The Australian Small Business Champion Awards is a way to recognise the efforts of small business people whose efforts contribute to the prosperity and vitality of communities across Australia”, said Steve Loe, Managing Director of the awards. “As a small business owner myself, I know the vision and dedication to excellence required to succeed. These traits have been displayed in abundance by all of our 2014 Small Business Champions.”

Luke Dawson, Solutions Architect of LX Group was presented with an award statuette, certificate and gained national recognition as an industry leader.

Small business from across Australia delivered an impressive array of entries, with winners representing a broad range of industries from all states and territories.

The Awards are proudly presented by Precedent Productions, a small business in its own right, and supported by Sponsors – Castaway Financial Forecasting, BizCover, Jcurve Solutions, Australia Women Chamber of Commerce and Industry, and Key Person of Influence.

– ENDS PRESS RELEASE –

For more information and a complete list of company services, visit our web site at https://lx-group.com.au.

Contact:

LX Group, Elwin Cross, Tel:  (02) 9209 4133  Email:  [email protected]

 


Muhammad AwaisLX Group named the Champion Professional Services

Constrained Application Protocol, or CoAP, is an application-layer networking protocol aimed primarily at application in networks of small resource-constrained embedded devices, wireless sensor networks and similar Internet-of-Things applications – helping to enable efficient networking and Internet connectivity with low overheads.

This protocol is particularly well suited to low-power wireless sensor networks with lossy networking and embedded control and automation systems, where such systems need to be supervised or controlled remotely via standard Internet networks.

CoAP is designed to easily translate to HTTP for simplified integration with the web, while also meeting specialised requirements such as multicast support, very low overhead, and simplicity. These are valuable, important features for Internet-of-Things and machine-to-machine networks which tend to be deeply embedded and have much less memory and power available than traditional Internet-connected computers and mobile devices, meaning that efficiency and low overheads are important.

Furthermore CoAP enables embedded web services for even the most constrained devices and networks, while integrating with the web architecture and HTTP. Optimised for applications such as smart energy, home and building automation, asset tracking and cellular M2M, CoAP is emerging as an increasingly popular and important, standardised and interoperable technology in the Internet-of-Things sector.

CoAP includes several HTTP-like functionalities, but they have been fundamentally redesigned for operation in resource-constrained Internet-of-Things and embedded networks. Like HTTP, CoAP identifies resources using a universal resource identifier, and allows resources to be manipulated using HTTP-style methods such as GET, PUT, POST, and DELETE.

The protocol’s transaction layer can include four types of messages: confirmable, where acknowledgement is required, non-confirmable, where acknowledgement is not required, acknowledgement for a confirmable message, or reset, which indicates that a confirmable message is received but the information that would provide the context to allow it to be processed is missing.

CoAP makes use of two message types, requests and responses – using a simple binary header format that is not demanding to parse, and it is at this request/response layer where the REST-based communication occurs. This request/response model may be contrasted with other models such as the publish/subscribe model employed by other significant transport protocols in Internet-of-Things technologies, such as MQTT.

The base header may be followed by further options in an optimised Type-Length-Value format. CoAP is bound to UDP by default and optionally to datagram transport layer security or DTLS, meaning that CoAP can run on many common devices that support UDP or a UDP analogue, whilst providing the optional capability for secure CoAP, which mandates the use of DTLS as the underlying security protocol, providing the potential for good security in applications where authentication and security is an important requirement.

The Internet Engineering Task Force’s Constrained RESTful environments (CoRE) Working Group has done the majority of formal standardisation work with CoAP so far, with a set of IETF Requests for Comments soon to be released surrounding CoAP standards. The standardisation of CoAP by the IETF is in its final stages, and the protocol is soon entering into IETF Internet Standards documents that are aimed at standards-building to better enable the Internet of Things.

In order to make the protocol best suited to Internet-of-Things and and machine-to-machine applications, various new functionalities have been added. The CoRE working group has proposed low header overhead and low parsing complexity as key goals of the CoAP standard-building effort, along with support for the discovery of resources provided by known CoAP services, and mechanisms for simple subscription to a resource and resulting push notifications from that resource.

The mapping of CoAP with HTTP is defined, with RESTful protocol design, allowing proxies to be built to provide access to CoAP resources via HTTP in a uniform way without difficulty.

Access to CoAP resources via RESTful HTTP over TCP is particularly attractive for connecting embedded devices in consumer premises to the Internet, given the near universal availability of HTTP stacks for various diverse platforms.

The RESTful HTTP approach has found success in smaller-scale networks, particularly low-power and lossy wireless networks where message latencies are required to be within the order of seconds, for example for home automation and smart energy management networks.

As some examples of significant adoption of CoAP by major commercial players in the emerging Internet-of-Things industry, CoAP has already found success as a key enabling technology for Advanced Metering Infrastructure (AMI) applications for electricity utility companies deployed within Cisco Systems’ Field Area Network ecosystem.

LX2

Sensinode’s NanoService solution uses CoAP, together with their semantic web linking, resource directory and EXI technology, to provide end-to-end embedded web services for the Internet of Things.

If CoAP appeals as a protocol for your next IoT-enabled product or design revision – or you’re interested in any or all stages of the process and need a partner to help meet your goals – the first step is to discuss your needs with our team of experienced engineers that can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisMinimal IoT nodes with the CoAP Protocol