All posts tagged: iot

The Internet of Things (IoT) is increasingly taking over from Machine-to-Machine communications (M2M) as the trendy new buzzword. However, these terms are often used interchangeably, and neither of these two popular terms is well defined or standardised, with many organisations and companies operating with their own internal definitions. So, what’s the difference between IoT and M2M?

In a basic sense, the definition of Machine-to-Machine communications (M2M) is that it’s communication between one remote machine and another. M2M is basically about communicating with a remote machine in the field in order to manage that machine or collect machine and sensor data.

M2M connectivity has been used in industry in one form or another long before the Internet in its modern form has been around, usually through the use of embedded modems and the wired or cellular telephone networks.

As an example of a familiar embedded M2M system, which has been in use for a long time, consider the point-of-sale EFTPOS terminal in a shop, which communicates with the bank, commonly over the telephone network. This system is networked from point A to point B, with a specific job to do.

When it comes to the maintenance of vending machines or industrial machines, M2M capabilities allow the vendors of machines or assets to reduce service and management costs through remote diagnostics, troubleshooting, updates and similar remote maintenance which optimises the deployment of service personnel in the field, deploying personnel only when they’re needed.

The scope of industrial M2M also includes industrial telemetry and remote surveillance of systems such as SCADA equipment.

M2M can be understood from a more vertical perspective, usually built around proprietary, closed systems, whilst the IoT encompasses a more horizontal and interoperable approach where vertical applications are pulled together in order to provide value for both business and end users.

While M2M solutions offer remote communications with machines, this data is traditionally targeted at specific, closed solutions that perform specific applications. Rarely, if ever, is the data integrated with enterprise applications to help improve overall business performance, and this is where more complicated IoT applications can realise gains both in terms of user and business value.

If you can recognise whether you seek a point solution for simple remote machine access, such as a service-management application, or you seek to drive incremental business benefits across the enterprise through the use of analytics, Big Data and other software-oriented tools for the improvement of business performance, both from the business perspective and customer perspective, then you can recognise whether a machine-to-machine application or an Internet-of-Things application is what you’re looking for to best suit your needs.

The IoT represents things connecting with systems, people and other things, moving beyond connectivity from one machine to another. “Things” in the IoT can include machines, sensors, consumer products, appliances, vehicles and systems that control other physical devices, but they can also include CRM systems and analytics applications, data warehouses or other business intelligence systems.

Internet-of-Things applications and platforms can interconnect data between things, systems and people, connecting things to other things as well as cloud computing infrastructure, people, and business systems.

But there is some overlap between modern IoT systems and M2M systems, since every modern IoT system must have some kind of machine-to-machine communications links somewhere. You might say that today M2M systems are a subset of the Internet of Things, but the IoT has a much broader scope than traditional M2M connectivity.

Things and systems in the Internet of Things are also interconnected into people – consumers and end users as well as business decision makers.

Integration of device and sensor data with big data, analytics and other enterprise applications is a core concept behind the Internet of Things and this integration is key to achieving many potential new IoT benefits throughout industry. IoT devices communicate using open standards, in many cases, and this use of open standards is a key driver behind the success of the Internet of Things, just like the Internet has been built around open standards with great success.

This use of open standards, and room for interoperability, is a key factor that differentiates the IoT from the older domain of industrial M2M telemetry, which is often proprietary and vendor-specific, with the communication from a remote machine being tied back to one fixed place for one fixed application at one specific operator or site.

The data collected by Internet-of-Things services and devices can be incorporated into enterprise applications to enable improved service but also improved business intelligence, operational improvement and indeed the generation of whole new business models.

The ability for applications throughout the enterprise to access device data to enable performance improvements and business innovation clearly distinguishes the potential of IoT technologies from traditional point-to-point M2M communications.

IoT applications typically rely on IP-based networks to interface device data to a cloud or middleware platform accessible from the Internet, enabling access to this data by any enterprise application, anywhere, that is authorised to do so. 

Bug Labs Swarm IoT LX Group

This is in contrast to the direct, point-to-point communication usually associated with M2M applications. Overall, enterprise integration capabilities, scalability, software instead of hardware emphasis, interoperability (without insecurity) and the dominance of standards-based as opposed to proprietary connectivity protocols are key factors that differentiate the Internet of Things from traditional M2M connectivity solutions.

No matter whether you’re looking for M2M or IoT solutions – here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisDifferences between M2M and the IoT

The ESP8266 Wi-Fi System-on-Chip from Espressif Systems is a highly integrated SoC designed for the needs of modern Wi-Fi-connected embedded systems, appliances, sensors and other cost-sensitive, Wi-Fi-enabled Internet-of-Things applications.

This high-performance wireless SoC aims to provide Wi-Fi capabilities in embedded systems with strong functionality at a low cost. It has powerful on-board processing and storage capabilities that allow it to be integrated with sensors or other application-specific peripheral devices via its general-purpose digital I/O ports with minimal development effort and potentially without the need for any separate microcontroller in many typical applications.

The ESP8266 provides single-band (2.4 GHz) Wi-Fi connectivity using the 802.11b/g/n standards and supports WEP, WPA and WPA2 encryption.

The high degree of on-chip integration minimises the bill of materials in your design, with a low-power Tensilica 80 MHz 32-bit processor core, RAM, ROM and GPIOs, power management module, and all RF front-end components such as the clock generation, PLLs, LNA and power amplifier all integrated on the 32-pin QFN chip.

This means that your complete Wi-Fi connected solution requires minimal external components and minimal PCB area. The ESP8266 offers a complete and self-contained wireless networking solution, including an integrated TCP/IP stack – and it can either provide Wi-Fi connectivity and networking functions to a separate application processor in your design or host your application itself in the chip’s on-board application processor.

Where the ESP8266 serves as an external Wi-Fi bridge to a separate application processor in your design, Wi-Fi connectivity is added to the host processor via a simple UART or SPI interface to the ESP8266. As long as your microcontroller has a spare serial UART or an SPI interface you’re ready to go, so you can straightforwardly interface the ESP8266 to essentially any microcontroller in your existing design.

The ESP8266 has also been designed with energy-efficient mobile and battery-powered applications in mind, with an architecture that minimises power consumption and provides a sleep mode and deep-sleep mode to minimise power use in your design at times when Wi-Fi network connectivity is not actively being used.

With a wide range of interfaces including SPI, SDIO, UART and I2C, the ESP8266 can be used for interfacing to external EEPROM and Flash memory, ADC/DACs, external audio codecs, or other sensors and peripherals that can connect to these serial interfaces.

In stand-alone mode at least one external flash memory chip to boot from is needed. The chipset also incorporates 16 programmable general-purpose digital I/O pins, which can be configured in software with a range of flexible interrupt and output options.

Espressif has released a complete Software Development Kit for the ESP8266, along with a VirtualBox Ubuntu image that provides you with a complete ready-to-go tool chain including gcc and all the other tools you’ll need to develop and build code for the Xtensa core in the chip.

Included in the SDK are SSL, JSON and lightweightIP (lwIP) libraries, providing the capabilities for a range of typical Internet-of-Things applications. Example code is provided to demonstrate the use of the chip’s UART, I2C and SPI interfaces as well as general-purpose digital I/O.

Espressif provides an ESP8266 Internet-of-Things SDK, which is specifically aimed at IoT applications. Although this SDK is only partially open source and some libraries are provided as binary blobs, a fully open-source third-party tool chain for development on the Xtensa CPU architecture is separately available.

A range of other third-party software development tools and interpreters are available or in development for the ESP8266, including the nodeMCU Lua interpreter and an ESP8266 port of the MicroPython embedded Python project, allowing you to use these scripting languages if you choose. There is also firmware available for the ESP8266 that implements MQTT-based message brokering for Internet-of-Things applications.

The ESP8266 is notable in that it is one of the few chip-level 802.11 Wi-Fi devices on the market, along with the Texas Instruments CC3000-series chipsets, which is available in small-volume distribution and with publicly-available datasheets and documentation, meaning that this device is accessible to small-volume businesses and small, independent developers in a way that 802.11 chipsets from major vendors such as Broadcom or Realtek generally aren’t.

Alternative Wi-Fi modules and devices such as the Spark Photon offer features such as USB connectivity, more memory, more I/O and a more familiar ARM architecture, but they are more expensive – the Photon is close to USD $20, for example.

The Spark Photon is a very simple breakout board that just provides an antenna and a voltage regulator for USI’s WM-N-BM-09 Wi-Fi module, which implements Broadcom’s standardised WICED ecosystem with a STM32 Cortex-M3 microcontroller core alongside Broadcom’s BCM43362 Wi-Fi radio.

As another example of relatively low-cost embedded Wi-Fi solution, there are similar boards coming from China today for about $10 based on the MXchip MX1081 chipset, which also incorporates the Broadcom BCM43362 core alongside a STM32 microcontroller.

The Texas Instruments CC3200 Internet-of-Things SoC also aims to provide a complete single-chip IoT solution based around an ARM Cortex-M4 80 MHz CPU core and integrated Wi-Fi radio along with a flexible range of digital I/O interfaces and an integrated ADC.

The CC3200 offers extensive, good quality, English documentation, development tools and resources along with an ARM core that is more popular and familiar with developers than the ESP8266’s Xtensa core. The CC3200 is distributed in small volumes and has publicly available documentation and development tools as with the ESP8266, however the ESP8266 has the advantage of its relatively low cost even in small volumes.

ESP8266 2

With the appearance of such low-cost IoT capable chipsets on the market, bringing your Internet-enabled product ideas to market can be much faster, simpler and even cheaper than you ever expected. And here at the LX Group we have the team, experience and technology to bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisReducing the cost of IoT devices with the ESP8266

Every few weeks it seems that a new Internet-of-Things platform appears, and thus we have a new platform to explore – GadgetKeeper.

This new product provides a complete development and application platform for the Internet of Things, a full application design, runtime and intelligence environment which allows you to rapidly prototype and rapidly create IoT solutions to connect your sensors, devices and equipment (“Things”) with people and systems.

GadgetKeeper provides a simple development environment, robust APIs and worry-free hosting, allowing you to accelerate your application development and take advantage of scalability as your application and your number of devices grows. 

You can easily integrate your application with external IT systems through GadgetKeeper’s powerful APIs, web services, and the completely hands-free cloud hosting environment provided by GadgetKeeper that automatically scales to meet any demand, whether you’re serving several devices or several million.

The designers of the platform believe that every smart device has inherently unique characteristics. Therefore, GadgetKeeper models the attributes of any given device with a unique “Thing”. A “Thing” within GadgetKeeper is a model that could correspond to an Internet service accessed externally via the API or a real-world gadget such as appliance, sensor or other physical device.

 GadgetKeeper’s mission is to provide the best IoT software and application platform for developers, manufacturers, service providers and consumers, allowing you to make and use smart, Internet-connected products, send updated sensor information from IoT devices directly to the server, and to control, integrate and manage your devices remotely.

The platform provides server-side JavaScript support, a powerful UI and an API to handle interaction between your things, to manage and to integrate your IoT solutions. You can use JavaScript to program your server side logic – whenever it’s a property, method or event trigger. From your code you can fire events, call methods and properties or call external systems.

GadgetKeeper supports a powerful server-side API for integration with external services, allowing you to interact with services such as email, HTTP, SMS, Twitter and more. Furthermore it supports communication between your things and the GadgetKeeper platform using a selection of many different protocols.

You can connect your devices to the GadgetKeeper API using REST or JSON-RPC over the top of TCP sockets, HTTP or MQTT at the transport layer.

The platform employs a so-called “Reach Thing Model” to model the characteristics of your devices – a full object model for your things including properties, methods and events. Things are not just “data logging” entities, but they are smart objects that can interact with each other and the world. Properties and methods can be handled by a thing or by its server-side proxy, and events can likewise be fired either by a thing or by its server-side proxy.

The GadgetKeeper platform also provides flexible event handling, where events from your things are easy to handle by creating event triggers that “listen” for thing events and react to them in a defined way. JavaScript can be used to define complex event handling logic.

gadgetkeeper2

There is also a provision for a comprehensive capability for event storage and time-series data storage. All events fired by things are recorded to event storage and numerical values are extracted and recorded in time-series data. Data can be displayed on interactive dashboards, which can also be set up for the monitoring and management of your devices.

GadgetKeeper is compatible with popular hardware platforms such as the Arduino, Raspberry Pi and BeagleBone. Machine-to-machine platforms for instrumentation and wireless sensor networks in industrial applications such as the CloudGate and TSTMote systems are also supported.

GadgetKeeper provides usage examples for these platforms, along with documentation and tutorials for the setup and provisioning of these systems to talk to GadgetKeeper so you can get up and running easily.

Integration tutorials are also provided to get you up and running with API integration of your GadgetKeeper Internet-of-Things application into external services such as Twitter.

Overall there is a great amount of promise with the GadgetKeeper platform at this stage, however like every other Internet-of-Things platform there are many options and variables to take into account before selecting the right system for your needs.

And no matter what your requirements are, from concept to final product – here at the LX Group we have the experience and expertise to solve your IoT power problems right through to a whole system to meet your needs.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisGadgetKeeper – a new IoT platform for common hardware

OpenIoT is a generic middleware platform for Internet-of-Things applications, which allows you to link together Internet-connected devices and semantic Web services via a friendly user interface, working either in Cloud Computing environments or with a local server.

This platform is available as a Virtual Development Kit, providing a complete cloud solution for the Internet of Things which allows you to easily get up and running getting information from sensor clouds and connecting this information with Web services without worrying about exactly what different sensors are being used.

The OpenIoT middleware enables the easy scalability of sensor networks and the addition of new, cost-effective sensors in an intrinsically flexible framework, and aims to provide a complete middleware for Internet-of-Things applications, connected sensors and wireless sensor networks.

OpenIoT is building a novel platform for IoT applications, funded by the European Union, which includes powerful capabilities such as the ability to compose (dynamically and on-demand) non-trivial IoT services using a cloud-based and utility-based paradigm.

With an aim to facilitate open access to a wide range of technologies for Internet-connected sensors and other objects exposed as “services”, the creators claim that OpenIOT is the first open-source project to provide the means for setting up, managing and using a sensor cloud in this way.

With the ability to support large-scale deployments by co-scheduling access from thousands of simultaneous users to millions of sensors and actuators, OpenIoT will be well placed for all IoT-based solutions of all sizes, and it will have a small number of its own open (public data) sensing services for anyone to send queries to.

The OpenIoT project explores efficient ways to use and manage cloud environments for IoT entities and resources, such as sensors, actuators and smart devices, and the management of utility-based, pay-as-you-go business models for IoT networks and services.

The platform will provide instantiations of cloud-based and utility-based IoT sensor and data management services, using the OpenIoT adaptive middleware framework for deploying and providing IoT services in cloud environments to enable the concept of “sensors as a service” business models for commercial IoT applications.

 OpenIoT supports flexible configuration and deployment of algorithms for collecting and filtering the large volumes of data that are collected by networks of Internet-connected objects, and processing and detecting those events that are determined to be particularly interesting and relevant to application or business outcomes.

 As OpenIoT is a completely open-source project, and all its source code is available for download – developers and end-users can examine and openly use the OpenIoT platform. You can use the OpenIoT source code to create innovative services, to extend OpenIoT with new sensor wrappers, or to improve the OpenIoT platform itself.

 Furthermore, OpenIoT also aims to provide the capacity for semantically annotating sensor data, according to the W3C Semantic Sensor Networks specification, streaming the data collected from various sensors to a cloud computing infrastructure, dynamically discovering and querying sensors and their data, composing and delivering IoT services that comprise data from multiple sensors and visualising IoT data using many different options such as maps and graphs.

 An example application area where OpenIoT has been targeted is the improvement of efficiency in industrial operations such as manufacturing and agriculture. The OpenIoT platform can be used for intelligent sensing in manufacturing environments where it offers rapid integration of data from sensors and other devices in the manufacturing environment, dynamic and intelligent discovery of new sensors in factories, and analysis of data collected from the factory floor.

 The OpenIoT platform enables the dynamic selection of sensors along with the nearly-real-time fusion of sensor data in order to deliver any manufacturing indicators that are required – not just sets of inflexible, pre-configured indicators. This can increase the agility of decision-making and of the manufacturing process.

 One example of this is an agricultural application – where farmers and researchers can benefit from an instantaneous crop performance analysis platform that is powered by OpenIoT, using a wide range of distributed remote sensors gathering various types of data in order to build models that predict crop yields.

openiot2

 Every year Australian grain breeders plant up to a million small test plots of wheat and barley across the country to find the best high-yielding varieties. The Phenonet application developed by OpenIoT in partnership with the CSIRO is an interesting demonstration of the capability of the OpenIoT platform, using advanced sensor network technology to gather environmental data from crop trials at a much higher resolution than traditional methods and providing an OpenIoT-powered high-performance, real-time online data analysis platform that allows scientists and farmers to visualise, process and extract both real-time and long-term crop performance information.

 The Phenonet project enables plant breeders and farmers to compare and evaluate the performance of different grain varieties using real-time measurements from a variety of remote sensors. By combining these measurements with each plant’s genetic profile, plant scientists can distinguish the effects of microclimate and genetics, thus improving the accuracy and speed of plant breeding which leads to better crop quality and increased agricultural yields.

This is only one of an almost infinite number of applications that can be harnessed with the OpenIoT platform. And no matter what your requirements are, from concept to final product – here at the LX Group we have the experience and expertise to solve your IoT power problems right through to a whole system to meet your needs.

 Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124. 

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisOpenIoT – Open-source middleware for the Internet of Things

The Industrial Internet Consortium, or IIC, is a global not-for-profit partnership of industry, government and academia which was founded early in 2014 to bring together many different organisations and technologies which are well placed to accelerate the growth of the “Industrial Internet” by identifying, assembling and promoting best practices in the development of industrial Internet, machine-to-machine and “Internet-of-Things” technologies.

 The diverse membership base of the IIC includes large and small technology innovators, vertical market leaders, researchers, universities and government organisations.

 The goals of the IIC are to drive innovation through the creation of new industry-oriented use-cases and test beds for real-world industrial Internet applications, to define and develop the reference architectures and frameworks necessary for interoperability in Industrial Internet applications, to influence the global standards-development processes for Internet and industrial systems, to facilitate open forums to share and exchange real-world ideas, practices, lessons and insights, and to build confidence around new and innovative approaches to security in industrial embedded systems with network connectivity.

 Membership of the Industrial Internet Consortium is open to all entities and organisations with an interest in accelerating the implementation of the Industrial Internet using open standards, and a revenue-based system of membership fees makes membership accessible to academics and small companies.

 Founded by AT&T, Cisco, General Electric, Intel and IBM – the IIC’s goal is to become as an open-membership consortium to try and break down the barriers of closed technology “silos” to support better access to big data – with improved integration of the physical and digital worlds, unlocking enhancements in business value for industry. Today, the list of IIC members includes ThingWorx, Bosch, Telstra, the University of Pennsylvania, and many more.

 The consortium formed in the belief that as the physical and the digital worlds collide through increased use of machine-to-machine and Internet-of-Things technologies, particularly in industrial applications, organisations need to be able to more easily connect and optimise assets and operations to drive agility across all industrial sectors.

 These goals can be reached by identifying the requirements for open interoperability standards and defining common architectures to connect smart devices, machines, people and processes that will help to accelerate more reliable access to big data from industrial systems and hence unlock yields in business value.

 With their aim to take the lead in establishing interoperability across various industrial environments for a more connected world, the Consortium was chartered with the objectives of also encouraging innovation in the Industrial Internet sector by utilising existing use cases, and creating new use cases and test beds, for real-world Industrial Internet applications and by delivering best practices, reference architectures, case studies and standards requirements to improve the ease of interoperable deployment of connected technologies in industry.

The IIC operates with global scope and openness to international membership, based on the Consortium’s recognition that in today’s global economy members need to collaborate with colleagues across the world to address the unique challenges of incorporating the digital with the physical.

 Globally integrated enterprises run factories and source parts and materials from across the globe. Smarter cities and governments across the world will utilise and benefit from the Industrial Internet, and this will likely enable smarter buildings, improvements in energy efficiency and smart energy management, better emergency communication and responsiveness.

 While much of the initial industrial support that founded the Consortium comes out of the United States, the scope of the IIC is worldwide.

IIC2

 The IIC views the technology industry at the precipice of a major technological shift, where smart machines will communicate and connect in ways that will lead to transformational business outcomes. Any company that wants to have a voice in setting the direction for the Industrial Internet is encouraged to join the Consortium. IIC members are developing critical collaborative relationships with leaders in technology, manufacturing, academia and the government on working committees.

 Members can participate in IIC research, test bed and standard-building activities, while members also gain an immediate, visible platform for their opinions. IIC members are encouraged to join one of several collaborative working committees: technology, architecture, or security working committees, for example.

 There are many different organisations working on industrial, academic and governmental coordination and cooperation in the development of standards and technologies for emerging Internet-of-Things and machine-to-machine applications.

All these organisations have similar, overlapping goals of delivering best practices, reference architectures, case studies, and standards requirements to make the deployment of connected technologies easier. While other organisations focus more on developing standards, the IIC has more of a focus towards creating frameworks, use cases and test beds for real-world applications across various industrial environments. You can learn more about the IIC by visiting their website

 As the consortium is founded by such strong organisations, it is sure to be another success in the world of the Internet of Things. And if you’re considering working in this field, our experienced award-winning engineering team can harness embedded hardware and software for your success in the IoT space.

 Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

 LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisIntroducing the Industrial Internet Consortium  

Bug Labs’ cloud-based Swarm platform is an Internet-of-Things development platform that lets you easily add new Internet-connected services to your existing design or product.

Whether it’s a simple sensor device or a complex industrial system, Swarm provides everything you need to get your product up and running quickly with the new value that Internet-of-Things services can add, helping you to innovate in the rapidly growing IoT market.

Swarm abstracts the raw functionalities, such as sensors, actuators or transceivers, that any hardware device is equipped with and exposes these hardware functions as web services, allowing simple drag-and-drop creation of applications that interact with a diverse range of hardware capabilities.

The system is based around “resources”, which are applications or devices that are configured to produce or consume data over Swarm. A resource may be a physical device such as a smartphone, tablet, an embedded hardware platform or a microcontroller equipped with a Wi-Fi or Ethernet chipset for network connectivity, or it could be a mobile or Web application.

Anything that can communicate through HTTP can be configured to join a swarm and begin producing and consuming data, and Swarm makes it easy to acquire data from or to control connected devices over the Internet or local network using JavaScript or plain HTTP requests.

Resources are organised into collections referred to as swarms. Once a swarm of resources has been created, users may configure it to allow their own resources to participate as well as invite another user’s resources to become members. The owner of the swarm can control what level of access (data production, consumption, or both) each resource in the swarm has.

Once multiple resources have been grouped together as members of a swarm, a resource can communicate and share data with other resources in that swarm. You can easily control the level of access that a resource has to the data within a swarm, and grant a resource permission to produce data, consume data generated by other devices in the swarm, or both.

You can invite another user’s resources into your swarms and accept invitations to place your resources in somebody else’s swarms, making it possible to share your devices and your data with others easily and securely to the extent that you choose to.

Swarm’s RESTful configuration API makes it easy to create resources and swarms and to add resources to swarms as data producers, consumers or both. Once your resources are configured, the Participation API makes it easy to get your resources interacting with the swarms they are members of, and begin producing and consuming data.

Swarm Dashboard is a “homepage” for your device, which provides a fast way to get up, and running with Internet-of-Things value added to your connected product. A dashboard provides secure, real-time, visual access to all the important features and data your device offers, creating a high level, easy-to-understand yet powerful way for your users and customers to experience your device online.

You can choose from hundreds of colourful pre-built graphs, charts, gauges, tables and text displays to design and build your dashboard, all from an easy-to-use graphical interface, which does not require advanced programming expertise to set up. All the elements of your Swarm dashboards are optimised for the best viewing experience on different customer’s devices – smartphone, tablet or PC.

A Swarm Dashboard is just the starting point for the construction of additional applications that can enhance your customers’ experience with your product, because every dashboard is powered by Swarm’s APIs that can be used to build extended dashboards and more complex applications, incorporating services such as event notifications and alerts, real-time visualisations, analytics and reporting, historical activity logs, compliance testing and integration into your existing customer relationship management or enterprise resource planning systems.

Bug Labs Swarm IoT LX Group

Developing applications for embedded computing hardware and other types of connected Internet-of-Things devices can be a complex effort which requires specialised tools and skills because the application code needs to run on the device itself, which is usually a constrained operating environment with limited memory and resources.

But what if you could run the application code elsewhere, in the cloud, and access the device over a network connection? Then you’d be able to write mobile and web-based applications with easier-to-use tools and languages such as JavaScript and Python, without worrying about resource constraints on the embedded device so much, and Swarm helps you to do exactly that.

Swarm lets you write applications using standard web development tools which can then run anywhere you like, whether it’s your PC, your browser, or a cloud-based application server. Swarm coordinates the communications between your application and the connected device via any IP network connection – via Wi-Fi, cellular, satellite or Ethernet networking hardware – securely and reliably in real time.

All this is made possible by intelligently converting hardware-specific I/O interfaces into a collection of easily understood and addressed RESTful Web APIs. Bug Labs’ dedicated Swarm developer portal provides more information for developers on Swarm, its architecture and its open-source code and APIs.

As another option for your existing or new IoT-enabled project, our experienced award-winning engineering team can harness Swarm for your success. Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisSwarm – simple IoT for new or existing products

Atmel has recently expanded its SmartConnect wireless connectivity portfolio with the announcement of a series of new, turnkey 802.11b/g/n Wi-Fi system-on-chips and modules which are aimed at enabling expanded possibilities in Internet-of-Things, home or building automation and smart energy management as well as smart, connected consumer electronics applications.

The Atmel SmartConnect Wi-Fi family is a range of self-contained, low-power and pre-certified system-on-chips and modules which bring 802.11 wireless LAN connectivity – and access to the Internet – to any embedded system.

These integrated modules offer a great solution for designers seeking to integrate Wi-Fi connectivity without any existing engineering experience with 802.11, real-time operating systems, IP stack concepts nor RF electronics.

Aimed at opening the emerging “Internet of Things”, Atmel’s SmartConnect Wi-Fi portfolio is ready to be integrated in a vast array of battery-powered devices and applications requiring the integration of WLAN connectivity without compromising on cost and power consumption.

Although an active 802.11 radio is more power hungry than some other RF connectivity standards such as Bluetooth Low Energy or 802.15.4/6LoWPAN – the familiarity and existing ubiquitous infrastructure built around the 802.11 wireless LAN standard makes it an attractive choice for many applications, avoiding the need for extra hubs, gateways or cables to be installed to get your devices connected to the Internet.

Atmel’s Wi-Fi system-on-chips are optimised for applications requiring energy efficiency, such as battery-powered devices, with a wide 1.8V to 3.6V supply voltage range, a deep-sleep-mode with less than 20 micro amps of current draw and an architecture that allows for instant switching of the radio on or off or into a sleep state without startup delays.

This allows for battery-powered devices such as portable nodes in wireless sensor networks to be connected to the Internet whilst still retaining extremely good energy efficiency, staying in a sleep state most of the time, waking up several times per day for a moment to collect sensor values and send this data to a server on the Internet before going back to sleep.

Atmel’s SMART SAMW23 Wi-Fi modules are based on Atmel’s low-power Wi-Fi System-on-Chip technology, incorporating WiFi along with an ARM Cortex-M0+ microcontroller core – a fully integrated single-source microcontroller-plus-Wi-Fi radio solution compatible with Atmel Studio 6 and capable of supporting network-connected battery-powered network nodes with a battery lifetime up to years, on a single chip.

This turnkey system provides an integrated software solution, which incorporates application and security protocols such as TLS, an integrated TCP/IP stack and other network services along with a standard real-time operating system.

atmel 0

To help you accelerate your development of these kinds of Wi-Fi connected embedded sensor networks and other Internet-of-Things applications, Atmel will be making the SAMW23 Wi-Fi system-on-chip available on one of Atmel’s standard Atmel Xplained evaluation boards which will be able to plug into any other Atmel Xplained Pro microcontroller evaluation board.

Getting started with coding is helped by the SmartConnect library provided by Atmel for use with their SmartConnect range of Wi-Fi hardware – a turnkey software framework that is available for you to use in Atmel Studio 6. It removes the need to understand the Wi-Fi stack, enabling designers to focus on the functionality and user experience of their product.

The Atmel ATWINC1500/ATWILC1000 SmartConnect system-on-chip is a family of IEEE802.11b/g/n network controller and link controller targeted at Internet-of-Things applications, providing valuable solutions for add-on WiFi connectivity in existing microcontroller solutions and product designs, bringing wireless LAN connectivity to your embedded device through a serial UART or SPI interface.

The WINC1500/WILC1000 chipsets connect to any Atmel AVR or SMART microcontroller with minimal resource requirements, and in their most advanced mode of operation these chips support single-stream 1×1 802.11n connectivity providing up to 72 Mbps PHY throughput.

Both devices feature a fully-integrated RF power amplifier, LNA, RF switch and power management system and provide internal Flash memory as well as multiple peripheral interfaces including UART, SPI and I2C.

For the serious enthusiast or less-technical developers, the Arduino team in collaboration with Atmel have recently announced the launch of the Arduino Wi-Fi Shield 101 – an Arduino shield based around the new Atmel ATWINC1500 802.11 network controller, which enables rapid prototyping of wireless, Internet-connected Internet-of-Things applications on the popular open-source Arduino development platform at a relatively low cost.

This cost-effective and secure new Arduino Wi-Fi shield is an easy-to-use extension that can seamlessly be connected to any Arduino board, enabling high-performance Wi-Fi connectivity, giving the Arduino design and developer community more opportunities to securely connect Internet-of-Things applications ranging from consumer appliances to wearable electronics, robotics, or countless other applications where wireless network connectivity is desirable.

And thanks to the open-source nature of the Arduino team’s projects, some leverage can be gained for your own products if using the same open-source licensing model. However the new Atmel wireless platform holds great promise for developers of IoT-enabled hardware. And that includes the engineering team here at the LX Group – who can bring your ideas to life.

Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisSmartConnect – the new low-power IoT Chipset Solution from Atmel

Mango Automation is an open-source software platform aimed at machine-to-machine (M2M) communications, industrial control and SCADA networks, home and building automation and smart energy applications as well as other applications in the Internet-of-Things domain. 

As a web browser-based, Ajax-enabled M2M software platform, Mango enables users to access and control Internet-of-Things networks and devices over multiple protocols simultaneously with a product that is easy to download and install across a range of different platforms.

However there is much more, Mango is a flexible, cross-platform software suite for industrial control and SCADA applications that allows you to record, log, graph, animate, alarm and report on data from sensors, equipment, PLCs, databases and webpages -providing an all-in-one data logging, control and monitoring system with a web browser based interface. 

Because of Mango’s highly modular design, you can use Mango to put together the exact application that fits your needs. And as Mango is web browser based, with full support for almost all popular web browsers, including Google Chrome, Mozilla Firefox and Internet Explorer 7, it’s simple to deploy and use across a broad range of different devices with different operating systems, including PCs, smartphones or tablets, as long as your device supports a compatible web browser. 

With an easy to use, visual, dynamic drag-and-drop design tool for configuring “dashboards” for the visualisation of your data, Mango can bring Internet-of-Things data to life.

Your data resides where you install Mango, so you are in control of your data, with the permissions that different users have to work with different sets administered under your control, and all in-browser communications with Mango supporting Secure Socket Layer (as with all modern web browsers), meaning that when using Mango you can have confidence in the security, privacy and local control of your data.

Mango provides an interface with which diverse data sources can be created and configured while providing downstream management of user access, alerts, data logging and automation, as well as providing flexible and convenient support for event handling. 

Any events that occur in Mango can be handled arbitrarily through user-defined event handlers for both system and user-defined events. Your event handlers can initiate external actions such as sending email notifications and escalations via a mail server, for example, or they can set values of data points in Mango’s database.

Mango works well with very lightweight, compact embedded computers, offering very low energy use, no noise and low cost. On an embedded Linux box with an 800 MHz CPU and 500 Mb of RAM, for example, Mango can host hundreds of data points collected from multiple data sources using multiple protocols, just using an embedded database. 

When more powerful hardware is used, and MySQL is configured, Mango can support thousands or tens of thousands of data points on a single Mango instance, storing its data in an external MySQL database.

Mango supports a broad range of different connectivity and communications protocols for communication with external hardware and software services, and Mango can receive data from any device for which there is a protocol driver. 

Currently supported protocols include Modbus, BACnet, OPC DA, Dallas 1-Wire, SNMP, SQL, HTTP, POP3, NMEA 0183, MBus, DNP3, OpenV, VMstat, and many other proprietary protocols developed by or for hardware vendors. As well as communicating with sensors and hardware devices such as webcams, Mango can easily communicate data, notifications and alerts with Web servers, mail servers, SQL databases and the like.

Mango also supports a “virtual” data source that can generate data for benchmarking or testing purposes, and support for more protocols is regularly being added with each new version of the software. 

As Mango is entirely built around standard software technologies and tools such as SQL databases, Java, Ajax, Apache Tomcat and the Jetty webserver. Because of the adoption of standard technologies and best practices by the Mango development team and the wider open-source community which contributes patches back to Mango, the familiarity and experience with these widely used and industry-proven components helps to manage security and integration issues, making Mango more scalable, secure and reliable.

Mango is based around a core that provides the base services that the application uses and this core is written in Java, so it will run on any platform supported by Java 6 – Windows, Linux or Mac, for example, as well as many less familiar embedded environments. 

mango m2m 1

The core functionality is extended to meet your application-specific needs by adding Mango Automation modules, which are simply “plugged in” to a Mango core instance by copying them into a sub-directory, and provide the specific functionality you need to create your SCADA application. Modules provide functionality such as connectivity to equipment via device “data sources”, graphical user interfaces, dashboards, language translations, themes and more.

As an open-source system, Mango offers you an almost infinite range of possibilities with a low initial investment – however there will always be the development time and related costs. But don’t let this put you off – Mango may be the ideal backbone your M2M requirements. 

If this is of interest to you, or you’re looking to enter the world of the Internet-of-Things – then consult the experienced team here at the LX Group. 

We can partner with you – finding synergy with your ideas and our experience to create final products that exceed your expectations.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisMango – the world’s most popular open-source M2M platform

RIOT is a relatively new operating system specifically aimed at applications in lightweight embedded systems, wireless sensor networks and Internet-of-Things applications. Billed as “the friendly operating system for the Internet of Things”, RIOT is competing with similar offerings such as TinyOS, Contiki and embedded Linux.

This may sound complex, however RIOT is aimed at developer friendliness, allowing you to program like you are used to – using standard programming languages such as C or C++, with standard compilers and tools such as gcc, gdb and valgrind, without the developer wasting time having to learn new or complex development environments.

As a real-time operating system that supports C and C++ development, multithreading and a high degree of modularity, RIOT offers all this with a very small, lightweight footprint that is well suited to use with small microcontrollers with limited memory and resources available.

Thus RIOT is aimed at minimising the learning curve needed for embedded programming whilst also being convenient and accessible to developers with established non-embedded programming experience.

The origins of RIOT can be traced back to 2008, when it was originally forked from the output of a German research program called FeuerWhere, that was dedicated to monitoring the location, safety and environmental conditions of Berlin firefighters working in emergency situations.

After being rebranded and expanded, RIOT was released to the public as an open-source project. RIOT is aimed at bridging the gap between fully-fledged Linux operating systems and existing solutions like Contiki and TinyOS that are aimed primarily at wireless sensor networks. The key design goals of RIOT are memory efficiency, energy efficiency in battery-powered devices, modularity and a developer-friendly programming interface.

RIOT is free, open-source software released under a LGPL license, meaning you can freely re-distribute and modify the software. RIOT is a publicly available community project, with an active community of users and developers online where you can learn more about RIOT, get help with writing an application for RIOT from other users and developers, and participate yourself and contribute to open-source kernel development or the integration of support for new platforms, microcontrollers and peripheral devices.

Implementing systems with RIOT isn’t difficult, due to the numerous supported embedded platforms, including the NXP LPC1768, the Texas Instruments MSP430, ST Microelectronics’ STM32 32-bit ARM family and other Cortex-M3 and Cortex-M4 devices, as well as common x86 PCs and x86 embedded systems.

The hardware dependent code is reduced to a minimum and abstracted from the kernel itself. For users that are more familiar with non-embedded programming and software development, you can start with the native port of RIOT, allowing you to run RIOT inside a process on Linux or OSX.

This eases the development and debugging of both RIOT itself and the projects you are developing that run on top of RIOT, allowing you to analyse, develop, test and debug your software with familiar, open tools and platforms such as gdb and valgrind, and to create virtual testbeds of multiple instances of RIOT running on a virtualised embedded hardware platform, running simultaneously and networked together with a configurable network topology, using only your PC.

After development and testing of your code on the native port and using this virtualisation capability, it can easily be deployed to your real embedded devices. Integrated system-on-chip devices containing integrated microcontrollers and radio transceivers on a single chip, such as TI’s CC430F6137, can be used, along with development boards and platforms such as the mBed, ScatterWeb MSB-A2, ScatterWeb MSB-430H, Memsic Telos-B, Texas Instruments’ eZ430-RF2500 and EZ430-Chronos.

You can write your code once, and easily compile and deploy the same code for both 16-bit platforms such as the MSP430 and 32-bit platforms such as ARM.

RIOT is specifically designed with features that are aimed at lightweight embedded devices for wireless sensor networks and Internet-of-Things applications, including very efficient memory and resource use, reliability and robustness in embedded applications running for long periods out in the field without maintenance, a real-time kernel with very low interrupt latency, priority-based scheduling and a tickless scheduler, high energy efficiency, strong code-footprint flexibility and multi-threading with very low threading overhead – making RIOT well suited to the smaller things in the Internet of Things.

RIOT includes core support for IPv6 6LoWPAN (RFC6282 and RFC6775 compliant), UDP, TCP including 6LoWPAN header compression, RFC6550/RFC6719-compliant RPL, and CCN-lite for content-centric networking support.

Furthermore the system includes high-resolution and long-term timers, which is important for embedded applications where timers may need to be running constantly in a device that is deployed for months or years without being rebooted. Other useful tools and utilities are built in, such as support for SHA-256 and Bloom filtering. RIOT includes wiselib built-in, which is a generic C++ algorithm library for heterogeneous, distributed, embedded systems, including algorithms for routing, clustering, time sync, localisation, security, and other common functions.

LX2

RIOT includes many built-in drivers for hardware peripherals that allow you to get started with useful hardware applications right out of the box. Some of the supported hardware peripherals include the CC2420, CC1100 and AT86RF231 radio transceivers, the Sensirion SHT11 humidity and temperature sensor, the LTC4150 battery charge/discharge counter, and many other sensors including accelerometers and ultrasonic rangefinders.

Thus with your product needs identified, RIOT can work with a wide range of hardware and base MCUs to form a complete product without “re-inventing the wheel”. If this is of interest, or you need guidance for any or all stages of product design – the first step is to discuss your needs with our team of experienced engineers that can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisRIOT – the friendly OS for the IoT

XMPP or the Extensible Messaging and Presence Protocol, formerly known as Jabber, is a communications protocol based on XML (Extensible Markup Language), aimed at message-oriented middleware and applications such as near-real-time instant messaging and presence information. XMPP is designed to be extensible, and has been used for publish-subscribe systems, file transfer, and communication in embedded Internet-of-Things networks.

As XMPP is defined as an open standard and uses an open systems approach of development and application – anyone may implement an XMPP service and interoperate with other implementations. And thanks to its open protocol, XMPP implementations can be developed using any software license and many implementations of the XMPP standards exist for clients, servers, components and code libraries – both open-source and proprietary.

XMPP is well supported as an open standard under ongoing development by standards-makers and organisations such as the Internet Engineering Task Force, which formed an XMPP working group in 2002 to formalise the core protocols of XMPP. No royalties are required to implement support of these specifications and their development is not tied to any single vendor.

In addition to these core protocols standardised by the IETF, the XMPP Standards Foundation (formerly the Jabber Software Foundation) is active in developing open XMPP extensions, including a new series of extensions aimed at allowing Internet-of-Things communications of sensors and actuators using XMPP.

Furthermore, the IEEE is working to define a “Standard for a Smart Transducer Interface for Sensors, Actuators and Devices – Extensible Messaging and Presence Protocol (XMPP) Standard for Networked Device Communication” which, with the backing of the IEEE behind it, is likely to be an influential new standard.

Another advantage of XMPP is that it offers good security, since private XMPP servers can be isolated from the public Intranet, for example on a company Intranet, and strong SASL and TLS security is built into the core XMPP specifications.

XMPP2

The XMPP protocol uses a decentralised client-server architecture where clients do not talk directly to one another, but there is no central server either. By design there is no central authoritative server, but anyone can run their own XMPP server on their own domain or intranet.

Because XMPP uses the XML text format, interfacing machine-to-machine Internet-of-Things networks to machine-to-person communications, where needed, comes naturally.

XMPP features such as federation across domains, publish-subscribe communications, strong authentication and security and XMPP’s name-domain addressing scheme, which helps to navigate the huge breadth of the Internet to get the data where it is needed, are being used to develop XMPP as a powerful tool for implementing the Internet of Things.

XMPP’s easy addressing of a device is especially useful if the data going to or from a device is going between distant, mostly unrelated points, just as in the traditional person-to-person case of XMPP-based instant-messaging communication.

Most XMPP implementations use polling, or checking for updates only on demand. A protocol called BOSH (Bidirectional streams over Synchronous HTTP) lets servers push messages. However, XMPP is not designed to be extremely fast, and XMPP’s idea of near-“real time” communication is close to “real time” on human scales, on the order of a second.

Whilst consideration of timing is important in the choice of Internet-of-Things protocols, this sort of timing is suitable for most applications and is comparable to the timing overheads generally seen in practical systems with other choices of messaging protocols such as MQTT.

Some of the open XMPP specifications under development are specifically aimed at enhancing XMPP standards for Internet-of-Things applications, for example describing how to manage and get information from concentrators of devices over XMPP networks.

Concentrators are devices in sensor networks concentrating the management of a subset of devices to one point. They can be small, such as Programmable Logic Controllers managing a small set of sensors and actuators, medium-sized, for example mid-level concentrators, controlling branches of the network which may use different communication protocols, or entire large systems.

Because XMPP assumes a persistent TCP connection and lacks an efficient binary encoding, it has traditionally not been practical for use over lossy, low-power wireless networks associated with Internet-of-Things technologies. However, recent work in the development of XMPP standards aims to make XMPP better suited for the Internet of Things.

Even though many of the existing and emerging XMPP specifications relating to sensor networks are generally written and can be used by other implementations not based on sensor networks, many of the requirements used to define these specifications come from the requirements of sensor networks and Internet-of-Things applications and infrastructure. These specifications provide a common framework for sensor data interchange over XMPP networks.

One new XMPP specification aimed towards Internet-of-Things applications defines a general concentrator profile that can handle all different types of concentrators available in sensor network architectures, working with multiple data sources.

The XMPP Publish-Subscribe model, comparable to the publish-subscribe model of other protocols such as MQTT of interest in Internet-of-Things applications, describes a system where a tree structure of nodes is published and users can browse this tree structure, publish items on these nodes, and syndicate this information.

XMPP, and the standards and extensions built around it, can enable efficient publication of data collected from large sensor networks, federation of disparate platforms, service discovery and invocation, interoperability of machine-to-machine communications with machine-to-person and person-to-person communications and other advantages in addressing, security and scalability that make it a very promising technology for Internet-of-Things applications. Its strengths in addressing, security, and scalability make it ideal for consumer-oriented IoT applications.

If XMPP appeals as a protocol for your next IoT-enabled product or design revision – or you’re interested in any or all stages of the process and need a partner to help meet your goals – the first step is to discuss your needs with our team of experienced engineers that can help you in all steps of product design, from the idea to the finished product.

To get started, join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.xmpp, internet, of, things, protocol, iot, messaging,xml, lx, group, embedded hardware

Muhammad AwaisXMPP – an extensible messaging protocol for the IoT