All posts tagged: life-saving devices

LX's embedded systemHave you ever thought about how truly marvellous all the gadgets we have today are? It’s not just the mp3 players, digital watches, e-book readers etc., but even things like traffic lights, airplane guidance systems and even climate control devices, which, even though we hardly notice them, makes everything more convenient and easy for us to go through our daily routines. And what make all of these things possible are embedded systems.

An embedded system is a computer built for one specific purpose, as opposed to a PC which is built for general purposes and can be used for many things (like watching movies, reading email, surfing the net, etc.) One device can have one or several embedded systems. A great example is a car. A car can have one embedded system to control the anti-locking brakes, another to control the automatic four-wheel drive, one to control the heater and air conditioner, and a multitude of other devices. Embedded systems are great for things that just have one purpose, and it is especially great for tasks which are repetitive and have to be precise (such as the anti-lock braking systems.) Equally, embedded systems are applied to transportation, medical applications and fire safety equipment because they can perform their tasks accurately in real-time without any delay and almost without any need for outside input.

Embedded systems have been around for longer than most people realise. For example, one of the first ones was used in the space shuttle, Apollo Guidance System, in the 60s. These were created to reduce the size and weight of onboard computers for the shuttle craft and one of the first and prime examples of integrated circuit use. Of course, as technology advanced, embedded systems became cheaper and smaller, and thus we’re no longer limited to putting them on million-dollar space shuttle, but even things like microwave ovens, water heaters and dishwashers.

Why an Embedded System?

Perhaps many people may think, instead of using a dozen small computers in one device, why not just put one computer to do all these things? Well, perhaps for things with a lot of embedded systems (such as the car) that may be possible, but what about for simple things, like your coffee machine, oven or a digital watch? Adding an entire computer system wouldn’t make much sense, when all you really need for your embedded system to do is tell time, turn itself on in the morning or make sure it stays a certain temperature. It simply makes much more sense to put in a simple, single-function computer.

When deciding on an embedded system, these are usually the top considerations:

Price – A computer used to be something only governments or big companies could own. Embedded systems make it possible for electronics to be affordable and efficient, so that we can place them in virtually anything and everything (yes, even the kitchen sink.)

Size and Weight – Before integrated circuits, no one could even dream of computers smaller than their living room, much less the palm of their hands. Now, we can have embedded systems in things even smaller than our palms, and they continue to become smaller and lighter.

Productivity – An embedded system does only one thing, and it can do it efficiently. For many repetitive tasks, such as the many mentioned previously, this is enough. It’s simply not a good use of resources to have an entire general purpose computer in something that only does one thing. What about that car example? Well, it’s true you could have one PC to control, but it would not only be expensive, but it would be inefficient. If the computer broke down, then you wouldn’t be able to use your car. With embedded systems, if your car’s temperature control broke down, you could still get to where you needed to go (you’d just need to wear shorts and roll the windows down.)

Embedded systems aren’t perfect, though; for example, you’d need a lot of testing to release certain products out on the market (such as medical and life-saving devices) and because it is embedded deep into the product, you couldn’t update it easily. However, embedded systems have certainly changed the course of human development in the last 20 years, and will most likely do so in the next century.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. www.lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWhat is an Embedded System?

LX's Electronics Prototyping

A prototype is a model that designers use to determine the feasibility of a concept or device and to test the development of the device throughout the research and pre-production phases of the product development. The word is made up of two Greek words meaning roughly something like “first impression.” Prototypes are used in many ways, but are particularly helpful and necessary in electronics development and manufacturing. Electronics prototypes are often assembled manually, which is faster and cheaper than creating an actual stamped PCB board and can be more easily modified, but still allows for circuits to be properly assembled and tested.

Proof-of-Concept Prototype

A proof-of-concept or proof-of-principal prototype is a model that is close enough to the envisioned device to establish sufficient certainty that the idea has the potential to do what is intended, before pursuing the task in earnest. Issues that are identified can be remedied long before the more costly and complex research process begins. This can save time and money that could potentially be wasted if it turned out that the conceptual idea is either impossible or is too difficult to make it worth the time and effort.

Prototype Product Evolution

Demonstration prototypes are the next step in the product evolution. Once designers, engineers and investors are convinced that the product is feasible, the prototype serves as a demonstration tool to sell the idea to others. Usually that refers to investors and others with an interest in the feasibility of the concept. In some cases the prototype is required to file for a patent for the device. Demonstration prototypes are generally more advanced and closer to the fully operational device than the concept prototype, but still not fully functional or formed.

Product Development

Once everyone is satisfied that the product is possible, the next stage of product development begins. In electronics, this often consists of the creation of software and control instructions. The research prototype serves as a test bed for the software and may undergo some hardware changes to ensure compatibility with the software algorithms.  Depending on the device, a research prototype may be used to also help develop appearance and physical designs. Once the research is complete, the final product is built in the form of a functional prototype, which as closely as possible mimics the finished product.

Commercial Production

Once the research necessary to build the device is complete, the final process is the commercial production phase. This is when the device is finally made into the fully functioning product that will be sold to consumers. The first iteration is called an alpha prototype. It will be as close to the intended final product as possible in both form and function and serves to identify any issues that interfere with production. Once complete it will be thoroughly tested and if necessary changes to either the device or production process will be made. The next iteration is the beta prototype, which reflects any changes that were made during the first iteration. Once complete the device is put through more grueling trials and testing. Once again, any identified issues are corrected and when complete the pre-production prototype emerges. This is the final prototype before large scale production begins.

Prototype Process

Prototypes are an important part of the process of creating, building and manufacturing an electronic product. Without utilizing prototypes along the way, the process would suffer frequent setbacks that will consume funds needed for the project. The prototypes evolve as new information comes to light and grows along with the idea. Without a prototype, the only way to know if a device will do what is intended would be to manufacture it, which requires a much larger expenditure of time, effort and money, and the finished product may not work at all.

Prototypes are an essential tool in the development of any electronic device because they take a concept that exists only on paper and in theory and transforms it into something that is tangible and actually performs at least some aspect of the envisioned product. Prototypes are considered so important in the electronics manufacturing field that there are entire companies that specialize in constructing them for other designers, inventors and manufacturers.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. www.lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisThe Importance of Electronics Prototyping