All posts tagged: prototype

Continuing from our previous articles which are focusing on a range of currently-available Internet-of-Things systems, we now move forward and explore another addition to the Internet-of-Things marketplace in more detail – the system known as “ThingSpeak”. Considered to be one of the first openly-available IoT platforms, ThingSpeak operates on their own free server platform, or you can run the software on your own personal servers – and as the entire system is open-source, it’s easier to work with and customise.

As with the other systems examined, ThingSpeak gives your devices the opportunity to interact with a server for simple tasks such as data collection and analysis, to integration with your own custom APIs for specific purposes. Due to the open-source nature the start-up cost can be almost zero, and unlike other systems ThingSpeak is hardware agnostic – giving your design team many hardware options. However as always, let’s consider the main two components in more detail.

thinghard

Hardware – You don’t need to purchase special base units or proprietary devices. As long as your hardware is connected to the Internet and can send and receive HTTP requests – you’re ready to go. For rapid prototyping, examples are given using many platforms including netduino, Arduino, mbed, and even with the competitive Twine hardware. This gives you a variety of MCU platforms from Atmel and ARM Cortex providers to work with, and as these development platforms are either open-source or inexpensive, your team can be up and running in a short period of time.

Furthermore creating your own devices can be quite inexpensive – a simple device based on an Atmel AVR and Ethernet interface can be manufactured for less than $20 in volume, and doesn’t require any software licensing expenses. To save on hardware costs, it could be preferable to have various sensors in a group communicate back to one connected device via inexpensive Nordic NRF24L01 wireless transceivers – and the connected device can thus gather the data into the require fields for transmission back to ThingSpeak.

Software – Thanks to the open-source nature of ThingSpeak either working with the existing server software or creating your own APIs isn’t a challenge. Interaction is easy with simple HTTP requests to send and receive data, which has a useful form. Each data transmission is stored in a ThingSpeak “channel”. Each of these channels allows storage and transmission of eight fields with 255 alphanumeric characters each, plus four fields for location (description, latitude, longitude and elevation – ideal for GPS), a “status update” field and time/date stamp. Data sent over the channels can be public or private – with access via your own devices and software finalising the security.

thingsoft

Once sent to the server this data can be downloaded for further analysis, or monitoring using various HTTP-enabled entities – from a simple web page, mobile application or other connected device. Various triggers can be created to generate alerts for various parameters, and can be sent using email, twitter, or other connected services such as an SMS gateway. After being in operation for almost three years, the platform has matured to a reliable service that has exposed many developers to its way of doing things, so support and documentation is becoming easier to find.

Overall the ThingSpeak system offers your organisation a low barrier to the Internet of Things. Creating a proof-of-concept device or prototype hardware interface can be done with existing or inexpensive parts, and the use of ThingSpeak’s free server can make an idea become reality in a short period of time. And once you device on the service, by internalising the server software, you can have complete control and security over your data.

If you’re interested in moving forward with your own system based on the ThingSpeak, we have a wealth of experience with the required hardware options, and the team to guide you through the entire process – from understanding your needs to creating the required hardware interfaces and supplying firmware and support for your particular needs.

Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success. We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines the ThingSpeak IoT Platform

Moving forward from our last instalment about the recent rise of the Internet of Things, in this article we’ll start to examine some of the major IoT systems that are already on the market in order to help determine which of them may be suitable for integration into your next or current project. At this time this isn’t an exhaustive list – however the three systems examined below each offer a wide variety of functionality which is implemented in different ways.

The first system is the “Electric Imp”. This is a simple yet powerful client hardware and cloud service system with a focus on simple implementation. The hardware consists of a device which is the same physical format as an SD memory card, and a unique identification IC which is fitted to your product. The Electric Imp card contains an industry-standard 802.11b/g/n WiFi transceiver and antenna, and a Cortex-M3 microcontroller with GPIO, I2C and SPI bus support and more.

The physical size of the hardware makes the Imp system relatively simple to integrate into existing and new products, and the hardware cost can be well under Au$30 in volume. To make things happen, software for the Electric Imp is created using an online IDE which is then transmitted to the required Imp via the Internet. This software allows your product to interact with web services, servers, smart phone applications and more. Furthermore the software can be updated and broadcast without any user operations, allowing bug-fixed and new features to be seamlessly rolled out.

However the Electric Imp is still in “developer” mode – considered as a late beta. Nevertheless it offers an inexpensive and theoretically trouble-free option for IoT integration. For more information, visit the Electric Imp website.

The second system is “Ninja Blocks” – developed locally in Australia, and finding global success. The Ninja Block is based around a combination of a BeagleBone Linux computer and a customised Arduino-compatible – and connected to the Internet. The system allows interaction with a cloud service (the “platform”) and variety of customised devices such as temperature and motion sensors, and also allows connection to commercially-available devices such as RF-wireless power outlets and alarm sensors.

Devices communicate with the Ninja Block via RF or USB cable, and the cloud interaction is provided by the cloud-based Ninja Platform. Once new devices are added to the Ninja Block, they are recognised by the cloud-based platform and the end user can create rules which interact with sensors and actuators. Furthermore smartphone applications can be developed for local interactions. Finally, the Ninja Blocks system is designed for the end-user in mind, allowing your customers to either create their own rules for your products – however you can also integrate your own API.

Due to the success of the system it is envisaged that a market for devices to interact with the Ninja Blocks will grow – and thus the opportunity lies in creating new products to interact with the system. Furthermore the system hardware has been open-sourced, allowing much faster and cheaper device design. For more information visit the website.

The final system we examine is the “ioBridge” system. This is the most mature of the three systems examined, and possibly spans the gap between the Electric Imp and Ninja Blocks. Almost any kind of device can be designed to integrate into the ioBridge systems, and as with the other two work with cloud-based servers/services and local mobile applications.

One benefit of the ioBridge service is the established development environment and the ioBridge company can create bespoke web applications for your product that integrates their hardware. However as it was before the “rush of Open Source” the ioBridge system is closed-source and licensing is required to create devices to work with it. If you’re looking for an IoT system this may not be the most cost-effective hardware solution, unless your product is designed specifically for customers already entrenched in the ioBridge ecosystem. For more information visit their website.

Although the Internet of Things may sound simple, and the goal is to be for the end user – as product developers there is much to take into account. The market hasn’t even come near the point of maturity – however all the options available are exciting and have great possibilities for automation, connectivity and making customers’ lives easier. Just as the manufacturers of video recorder units had competing standards in the 1980s, so do the IoT systems of today. It is too early to decide the winner, however each system has its’ pros and cons for each of your applications.

Here at the LX Group we can discuss and understand your requirements and goals – then help you navigate the various IoT options available to help solve your problems. We can tailor anything from a modified sensor to a complete Internet-enabled system for you. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines the Internet of Things marketplace

Here at the LX Group we have a wide variety of experience and expertise in helping organisations and individuals move their ideas and electronics prototypes into products and solutions. During this time we have developed methods of decreasing the time and budget required to develop prototypes, and distilled this into a system we call the LX Hardware Compiler. This is a mixture of our engineering expertise and advice combined with a range of pre-built electronic modules.

At this point we’re very proud to announce to the public the availability of a wide range of electronic modules that form part of the LX Hardware Compiler via our new online store – located at
https://lx-group.com.au/solutions/. Using the modules is easy and will save you time, money and accelerate your prototype design.

How? It’s simple. Browse through the range of modules to find a particular function that forms part of your circuit – for example a power supply, real-time clock or a level converter. You can review the data sheet for the major component of the circuit, and also download the Altium file to integrate the module into your parts library. Each module is designed to be placed on a PCB just like any surface-mount component. Once selected, the module(s) can easily be added to your prototype circuit, then once the PCB returns from the board house – simply drop in the module and solder it to the PCB.

At launch we have just over fifty modules available, in the following categories:

  • Analogue – such as OpAmps
  • Audio – including digital audio, MP3, amplifier and MEMS microphone units
  • Display – a great full-colour OLED module
  • Drivers – starting with our dual DC motor driver modlue
  • I/O Peripherals – including port expanders, multiplexers and optoisolators
  • Memory – add flash memory or a microSD card interface
  • Processors – a range of popular microcontrollers from various vendors
  • Programmable Logic – starting with Altera CPLD modules
  • Power supplies – a wide range of single, dual, SMPS and linear supplies and voltage references
  • Sensors – measure temperature, current, position heading and more
  • Switching – a variety of solid-state relays and FET switch modules
  • Wired communications – add Ethernet and USB easily
  • Wireless communications – including Wi-Fi, GSM/GPRS and Infrared receiver modules
  • Miscellaneous – starting with accurate real-time clocks and user-input

By using our range of modules wherever possible you can “let us do the work”, so you don’t have to spend the time designing your own common circuits or attempt to source parts in low volume at a good price – letting you can get on with your project and bringing it to life.

To get started, click here to visit our new online store and start exploring how our modules can fit in with your design. Or for more information and a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisAccelerate prototype design with the new range of modules from LX

Building prototypes of your product idea during the design process is naturally important and something that is a necessity for many reasons – including physical conceptualisation, demonstrations to possible financiers, proof of concept, usability testing in later stages, and project inspiration. However like all stages of the design process (as discussed last week) doing so requires a level of knowledge and expertise that not every organisation possess.

 This is not a criticism, but should be taken as a positive observation. And like any skill – if you can’t do it properly yourself, find someone who can. Here at the LX Group we will take the time to understand your needs and ideas which can then be transformed into one or even a range of prototypes – setting you up for success. As part of this process a decision needs to be made with regards to the type of prototype required, so let’s examine them in more detail and the benefits of each.

 Proof-of-concept prototypes

This is often a very basic example that will function in a similar manner to the final product – to prove that it is feasible and can be done. We say that the key purpose is to focus on, understand and address identified risk areas with the prototype. For example selecting an appropriate microcontroller to ensure processing speed and I/O requirements are adequate, or power consumption levels fall under a required maximum. During this level of prototyping it is important to remove design faults and technical risks otherwise the costs involved to make changes later on will be exponential compared to doing so now.

 Demonstration prototypes

When you need to show someone what “it’s all about” – a demonstration prototype will be required. This is the model you shop around to potential investors and future customers, document or show during grant applications, and generally spruik to the outside world. Those of you in larger organisations may also require this to “sell” the concept to decision makers in the upper echelons of management. The prototype may not function as the final product, however it should appear to do so. For example the housing and cosmetic look will match the final product as much as possible, however embedded software may be very basic or “emulate” the required functions.

 Research and Development prototype platforms

When you have the go-ahead to move forward with the project design, it’s time to get working on the design – which requires R&D prototypes. The algorithm development of the product can take place with these prototypes, and thus may not look like the finished product, but they will have the functionality and specified hardware to operate as one. Furthermore this type of prototype may be modified or altered during the research process to account for changes, updates and possible design changes.

 Commercial Product Iterations

There are three iterations during this stage in the design process, including:

  • Alpha prototypes – these are the first revision of the design and generally meet all aspects of the product design. These will be used to test the design parameters, review the design and seek improvements, and seek internal suggestions and improvement ideas.

  • Beta prototypes – these will include any changes made during the alpha prototype stage, and be submitted for compliance testing, certification, stress testing and product trials. After the results of those operations more changes may be required to the design requirements and specifications.

  • Pre-production prototypes – these are manufactured during short runs and ideal for verifying the manufacturing process, component suppliers, determining production yields, product testing, and the supply chain. For more popular products security at all stages of the supply and manufacturing chain is vital to remove the possibility of information leaks, industrial espionage and intellectual-property theft. You don’t want fuzzy photos of your next great thing plastered over Internet pundit websites.

 Where to from here?

 Your project budget and prototype requirements will determine the method of creation and time required to do so. For many designs the speed of prototyping can be increased dramatically, in conjunction with reducing the budget requirement by using a mixture of standard components, development kits, a mixture of reference and custom designs and pre-designed hardware libraries. By not “reinventing the wheel” wherever necessary time and money can be saved without too much effort, leaving resources available for R&D or custom sections of the design.

 So if you have an idea for a prototype and not sure about how to move forward and would like to have an experienced organisation take care of everything – we can “make it happen”. At the LX Group we have our own hardware compiler – a proven system of product design that will save you precious time and money. No matter what stage of design your team has achieved, we can partner with you to share our design and manufacturing expertise for your benefit.

 To move forward with your prototype requirements, simply contact us for a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

 LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group – your Partner for Prototyping