All posts tagged: service

The wireless lighting control market has seen a shift in recent years away from bespoke or proprietary lighting solutions, as efficient and low cost solutions have been introduced to the general market based around standards that you may already by familiar with – such as ZigBee – which provide opportunities for greater system standardisation and interoperability.

Whilst consumers increasingly recognise the value of the convenience, flexibility, and comfort that wireless, embedded “Internet-of-Things” devices bring to the home or office, a barrier to widespread adoption of these kinds of home automation systems in the past has been that traditionally, most product manufacturers have not provided a system that allows interoperability among different lighting and home automation vendors.

ZigBee Light Link was created to save time, money and installation labour by standardising simple, easy to install networks of intelligent lighting as well as control devices such as light switches, occupancy sensors, daylight sensors and Wi-Fi connected network gateways which allow the ZigBee Light Link network to be controlled by the consumer from a PC, tablet or smartphone.

lx0

As one of many ZigBee application profiles, ZigBee Light Link is a ZigBee application profile aimed at intelligent, wireless control of household lighting. It provides the lighting industry with a global standard for interoperable “smart” consumer lighting and control products that are easy to use, and it allows consumers to achieve wireless control over all their LED fixtures, light bulbs, timers, remotes and switches from their smartphone, PC or tablet. Products using the ZigBee Light Link standard allow consumers to configure their lighting remotely to reflect ambience, task or season, whilst at the same time improving energy efficiency.

The ZigBee Light Link 1.0 application profile is currently published, whilst the ZigBee Light Link 1.1 application profile specification is presently under development. Leading home lighting solution manufacturers who have contributed to the development of the ZigBee Light Link standard include GE, Greenwave, OSRAM Sylvania and Philips.

Products employing the ZigBee Light Link standard, and earning the ZigBee Certified seal, are known to the consumer to be interoperable and as easy to use as a common dimmer switch. Adding or removing devices from the lighting network is quick and easy, making it easy and intuitive for consumers to use every day. Since ZigBee Light Link is a ZigBee standard, ZigBee Light Link-based smart lighting solutions will interoperate effortlessly with consumers’ other devices employing ZigBee standards such as ZigBee Home Automation, ZigBee Input Device and ZigBee Remote Control.

A ZigBee Light Link network is a secure mesh network which allows communication to be safely relayed by multiple individual network nodes, i.e. control devices and lamps. A single light or group of lights can have the user’s favourite lighting state stored in memory and recalled immediately – even for a whole house worth of lights, at the press of a button.

Additional nodes can easily be added to or removed from the network without affecting system functionality or integrity. Adding or removing lamps is very easy and robust. Contrary to other networking solutions, it does not matter which lamp is installed first, or whether other lamps in the network are switched on or off. With ZigBee Light Link, adding a new lamp at a remote location is as easy as adding a new lamp within RF range.

Smartphones, tablets and PCs can control lighting products based on ZigBee Light Link via a ZigBee network gateway connected to ethernet or a Wi-Fi network. Such a connection also allows the ZigBee Light Link network to be controlled via the Internet, via web applications or mobile smartphone apps, for example.

lx0

Devices such as ZigBee-networked wireless wall switches and remote controls may also be used to control the lighting network. Functionality such as automatic timer control, “alarm clock” use, or “vacation mode” security use can also be defined in software and configured by the user with a simple software interface on the PC or mobile device.

The ZigBee Light Link profile can be used with ZigBee transceivers and ZigBee-ready system-on-chip microcontrollers from several semiconductor manufacturers – for example, the CC2531 or CC2538 IEEE 802.15.4/ZigBee System-on-Chip solutions from Texas Instruments.

 Texas Instruments offers the Z-Stack Lighting Software for the CC2530 ZigBee-enabled RF system-on-chip, which is an implementation of ZigBee Light Link and comes with a sample demonstration program for both a wireless “smart light” and “smart switch”, allowing engineers to easily get started in the development of an easy to use lighting control solution based around ZigBee Light Link.

The Z-Stack Lighting development kit from Texas Instruments consists of two “Z-Light” reference design RGB LED lamps based around the CC2531 chip programmed as ZigBee Light Link Colour Lights and a CC2531-based USB gateway dongle programmed as a ZigBee Light Link Colour Scene Remote, which can be operated independently as a remote control with on-board buttons or used as a gateway to interface the lighting network to PC software, for software-based advanced control and functionality.

This development kit contains everything needed to set up a basic ZigBee Light Link network and control the lamps either individually or in groups using either buttons on the controller node or software on the PC. TI’s website contains tools and application examples for free download that can be used to experiment with more advanced features of the ZigBee Light Link lighting control protocol and to develop demonstrators for direct wireless control or control from cloud-based or web services. Schematics and documentation for these hardware reference designs are also fully provided for free download from TI.

Thus the information and hardware is available for you to integrate products into this new standard of wireless lighting control, and if this technology interests your organisation but don’t have the expertise in – or just need to have it taken care of by a team of experts – and you’re not sure how to progress with a reliable implementation, we can partner with you to take care of this either in revisions of existing products or as part of new designs.

With our experience in retail and commercial products we have the ability to target your product’s design to the required end-user market and all the steps required to make it happen.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

Muhammad AwaisLX Group examines the Zigbee Light Link system

Continuing from our article last week which examined the Twine wireless sensor blocks, we now move forward and explore another recent addition to the Internet-of-Things marketplace in more detail – the “Electric Imp”. Although the name sounds somewhat toy-like, the system itself is quite the opposite. It’s a unified hardware, software and connectivity solution that’s easy to implement and quite powerful. It offers your devices WiFi connectivity and an incredibly simple development and end-user experience.

That’s a big call, however the system comprises of a relatively simple hardware solution and software development environment that has a low financial and learning entry level yet is quite customisable. Like other systems it comprises of a hardware and software component, so let’s examine those in more detail.

Hardware – Unlike other IoT systems such as Twine or cosm, the Electric Imp has a very well-defined and customisable hardware structure that is both affordable and incredibly compact. Almost all of the hardware is in a package the size of an SD memory card, and the only external parts required are a matching SD socket to physically contain and connect with the Imp card with your project, and supporting circuitry for an Atmel ATSHA204 authentication chip which enables Imp cards to identify themselves as unique unitsin the system.

Imp

Connection to the cloud service is via a secure 802.11b/g/n WiFi network and supports WEP, WPA and WPA2 encryption, however due to the size of the Imp there isn’t an option for a wired connection. The external support schematic is made available by the Imp team so you can easily implement it into almost any prototype or existing product. But how?

Imagine a tiny development board with GPIO pins, an SPI and I2C-bus, a serial UART, and a 16-bit ADC inside your project that is controlled via WiFi – this is what the Imp offers. It’s quite exciting to imagine the possibilities that can be introduced to existing projects with this level of control and connectivity. From remote control to data gathering, system monitoring to advanced remote messaging systems – it’s all possible. Furthermore, due to the possibility of completely internal embedding of the Imp system inside your product, system reliability can be improved greatly as there’s no points of weakness such as network cables, removable parts or secondary enclosures.

Software – As each Imp is uniquely identifiable on the Imp cloud service, you can use more than one in any application. Furthermore, your Imp firmware is created and transmitted to each Imp card online – which allows remote firmware updates as long as the Imp has a network connection; and a cloud-based IDE to allow collaboration and removes the need for customised programming devices, JTAGs, or local IDE installations. This saves time, money, development costs and offers a more portable support solution.

Imp

The firmware is written in a C-like language named “Squirrel”, which is created using the aforementioned online IDE. Once uploaded to the Imp card the firmware can still operate if it loses a network connection – or if a run-time error occurs and a network is available, the details will be sent back to the IDE. This allows developers the ability to remotely debug Imp applications in real-time – saving on-site visits and unwanted client-supplier interactions.

Furthermore, Imps have an inbuilt LED which can be utilised to display status modes if an application fails or other information which can be used to a clients’ benefit, helping them describe possible issues if a network connection isn’t available. There is a detailed language description, a wide range of tutorials and example code to help developers get started – and although some features are still in the beta-stage, the core advertised features are available at the time of writing.

If you’re interested in moving forward with the Electric Imp, we can guide you through the entire process, from understanding your needs to creating the required hardware interfaces and supplying firmware and support for your particular needs. The up-front hardware cost is much lower than other systems, and with volume pricing the implementation costs can be reduced further.

Our goal is to find and implement the best system for our customers, and this is where the LX Group can partner with you for your success. We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.au

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisLX Group examines the Electric Imp system

Moving on from our examination of Hardware design directions for Internet-of-Thing solutions, we now turn to the software portion of the solution. As there was many hardware options to consider, there is also a variety of choices to select from when looking for a service to collect data from and interact with your hardware. Each have their own features, costs and drawbacks – however these factors and more are subject to the goals of your project.

Nevertheless each have their own distinctive features, so let’s examine three existing and experienced market players in more detail. The first is known as “cosm”, however previously called “pachube”. Cosm is flexible in that you can use your own hardware designs or existing hardware from other vendors, and no hardware licensing is required. You can prototype very easily with cosm using inexpensive development platforms such as NXP’s mbed or even an Arduino-compatible board. This allows your hardware team to get started straight away. 

However the service is mainly for capturing and organising “feeds” of data from connected devices, and this can be done for zero cost. There are other options that allow device management and provisioning, however they are in beta stage at the moment. Nevertheless the cosm platform is effective and excellent for capturing data from remote devices for analysis and action – and with very low start-up and running costs it’s great for experimenting or proof-of-concept prototypes.

The next service we consider is “Thingspeak”. This is a fully open-source IoT platform that designed for data feeds and interaction with hardware in both directions. You can also import existing data collected before implementation. Although Thingspeak is open-source, it does provide security via API keys and user authentication. Rules can be created that react when data reaches a certain value or parameter – which cause twitter messages, can trigger hardware or other devices via a connected PC.

You can also export all captured data in .csv file format for ease of local analysis or system transfer. Due to the openness of the system, there’s a great variety of tutorials and examples available for Microsoft .NET, Arduino, python, processing and other environments – which will help your team get up to speed. And currently the service is no-charge. With these factors in mind, Thingspeak can provide a simple solution however more direct enquiries with the organisation would need to be made with relation to long-term changes in costings.

Finally we take a look at “Nimbits”. This service provides the usual cloud-based data gathering, analysis and so on – but using the Google Apps. This offers an incredibly reliable server, integration with Google Docs and other related software tools. As with Thingspeak, Nimbits is fully open-source and allows import and export of your own data. Nimbits offers integration with social media such as facebook and twitter.

The service is free for up to 1000 API calls per day, and then one cent per 1000 calls. Therefore you can again try it for free, or at a very low cost. Getting started is simple, with a range of tutorials on data capture, and interaction or messaging based on circumstances. It does require more coding than cosm or Thingspeak, however this isn’t an insurmountable challenge.

The IoT industry is growing, and even as we write this more services are being introduced and demonstrated. It can be difficult to choose which service to use, as they’re all quite young and untested over the long term, so having hardware and plans that can span two or more different services is essential for the longevity and sustainability of your IoT project.

Here at the LX Group we can discuss and understand your requirements and goals – then help you navigate the various hardware and other options available to help solve your problems. We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.
LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. https://lx-group.com.auPublished by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.
Muhammad AwaisLX Group examines popular online IoT platforms