All posts tagged: smart

The Internet Protocol for Smart Objects (IPSO) Alliance is an organisation, which has served as a resource centre and industry leader since 2008 – whose goal is to seek the establishment of Internet Protocol as the dominant, open standard adopted by industry as the basis for the connectivity of “smart objects”, machine-to-machine and Internet-of-Things networks and applications.

The IPSO Alliance provides a foundation for industry growth by fostering awareness, providing education, generating research, promoting the industry, and creating
a better understanding of IP and other open protocols and standards and the role they can play in the Internet of Things.

Through the work of the IPSO Alliance, many industries have come to realise the benefits associated with using the Internet Protocol within their Internet-of-Things and M2M products and applications. The Alliance is moving forward from explaining “Why use IP in IoT devices” to “How to use IP” down to the individual device level in connected IoT networks.

While the Alliance will continue to educate and inform on the numerous fundamental benefits of IP, it has embarked on defining the set of appropriate protocols, architecture and data definitions for IoT “Smart Objects” so that engineers and product developers working in this field will have access to the necessary tools in order “to build the IoT right” using open standards in a way that the IPSO Alliance considers to be the most valuable for everybody.

Primary goals of the IPSO Alliance are to promote the Internet Protocol as the universal, most secure and most resilient infrastructure on which to base ever more critical and ubiquitous connectivity, and to carry on their core mission of “Internet Protocol enabling the Internet of Things”. It is a goal of the IPSO Alliance to promote the use of IP as the premier solution for access and communication for smart objects as well as to invest in innovation in IP- and open-standards-based Internet-of-Things technology.

The Alliance aims to uphold open standards for IoT connectivity including but not limited to IP, supporting the Internet Engineering Task Force and other technical standards organisations in the development of standards for smart objects and Internet-of-Things connectivity, building on the technical work of these bodies with promotion, outreach and education.

The main objective of the Alliance is not to define new technologies and standards, but to document the use of IP-based technologies defined by the standards-building organisations such as IETF with focus on support by the Alliance of various use cases.

Furthermore, the IPSO aims to promote the use of the Internet Protocol by developing and publishing white papers and case studies and providing updates
on open standards-building progress from associations such as the Internet Engineering Task Force, with a particular focus on Internet-of-Things applications and what IPSO refers to as “Smart Objects”, which promote Web-scale interoperability between IP-connected devices and IoT applications.

The Alliance has recently broadened its standards vision to include education on the best practice for the use of IP and other open protocols to create end-to-end solutions for the Internet of Things, promoting the use of open standards, not just through awareness that these open standards exist but also through education of developers on how to actually use them most effectively in IoT products.

With an aim to understand the industries and markets where M2M and IoT devices can have an effective role in growth when connected using the Internet Protocol, and to organise interoperability tests that will allow members and interested parties to show that products and services using IP-based connectivity for “smart objects” can work together and meet industry standards for communication, the alliance is a beneficial group to further the use of IP in various products.

IPSO aims to build stronger relationships around IP and other open standards within the industry and to create a better understanding of IP and its role in connecting Smart Objects, fostering awareness that the Internet Protocol is an existing, proven networking solution based on open standards that is already deployed and demonstrated to be eminently scalable.

The availability of Internet Protocol, including IPv6 and 6LoWPAN, on constrained embedded systems and low-cost microcontrollers with very limited memory and other resources has made possible a new kind of device and a new kind of Internet, with ubiquitous interoperability between “smart objects” and connected Internet-of-Things devices.

IPSO2

The Internet Engineering Task Force specifies a set of standard protocols for Constrained Resource Environment (CoRE) IP-enabled networks, including the Constrained Resource Application Protocol or CoAP, applicable to low-power and low-bandwidth embedded devices.

CoAP is an application protocol for machines and connected devices, as HTTP is for the World Wide Web, but designed specifically for machine interaction and operation over networks of resource-constrained devices. IPSO’s Smart Object Guidelines provide a common design pattern, an object model that can effectively use CoAP to provide high-level interoperability between “smart objects” and connected software applications on other devices and services.

For more information on the IPSO alliance, you can visit their website from the following URL – http://www.ipso-alliance.org/. And if you’re looking for a partner to help bring your new or existing products to the Internet-of-Things, we have the experience, expertise and team to get the job done. Getting started is easy – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisIPSO – the Internet Protocol for Smart Objects Alliance

The new ZigBee Smart Energy 2.0 (SEP2.0) ZigBee Application Profile brings with it powerful new ZigBee capabilities for smart energy metering and control networks. With its ability to transport rate, demand, and load management messages to and from networks of smart energy appliances and the “Smart Grid” across a wide variety of wired and wireless media, the profile promises to be a key element of residential energy management systems.

Capable of passing energy-related messages across a HAN, or Home Area Network, using numerous different types of wired or wireless physical media, SEP2.0 is aimed at enabling the next generation of interactive smart appliances, HVAC, lighting and energy management systems – a “Smart Grid” of energy-efficient technology.

An IP-based HAN enabled by ZigBee Smart Energy 2.0 makes it possible to manage every aspect of the energy consumption and production of a home or building, whilst moving the information around a network built entirely around the Internet Protocol and interconnected with existing networks and the Internet.

The ZigBee Smart Energy 1.0/1.1 Profile was originally developed to allow 802.15.4/ZigBee low-power wireless mesh networks to support communication between smart meters and products that monitor, control and automate the delivery and consumption of electricity – and potentially other household utilities such as gas and water, moving into the future.

The functionality of the Smart Energy 1.x Profile was primarily intended to support the functional requirements of smart meters being used by electricity, gas and water utilities to manage their distribution networks, automate their billing processes, and communicate with customers’ energy management systems.

ZigBee-enabled smart meters act as communications gateways between the utility and the consumer, enabling the exchange of messages about pricing, demand response and peak load management. At least this technical capacity exists in theory, but electricity retailers will only bother with it if they have a revenue model in implementing such technology.

The ZigBee Smart Energy 2.0 Profile was created in response to the need for a single protocol to communicate with the growing universe of energy-aware devices and systems that are becoming common in homes and commercial buildings. For that reason, a diverse range of Function Sets were defined under SEP2.0, including Demand Response and Load Control, Metering, Billing, Pre-Payment, Directed Messaging, Public Messaging, Price Information, Distributed Energy Resource Management and Plug-in Electric Vehicle Management.

One or more of these Function Sets can be used to implement one of the Device Types defined in SEP2.0, such as Meters, Smart Appliances, Load Controllers, Smart Thermostats, In-Premises Displays, Inverters and Plug-in Electric Vehicles to name just a few.

ZigBee Smart Energy 1.x access the MAC/PHY layers of the 802.15.4 radio hardware via the ZigBee Pro protocol stack, but SEP2.0 replaces the ZigBee Pro protocol stack with the ZigBee IP stack, which uses the 6LoWPAN protocol to encapsulate the proprietary ZigBee packet structure within a compressed IPv6 packet. At the transport layer, IP packets bearing messages containing standard ZigBee command and data packets are exchanged using the familiar HTTP and TCP protocols.

When used in combination with the SEP2.0 Application Profile, the ZigBee IP stack provides a media-independent interface between the network and MAC layers of the stack that allows SEP2.0 packets to be carried across nearly any IP-based network.

A recent version of SEP2.0 includes support for communication across ZigBee and 802.11 wireless LANs as well as powerline communication (PLC) networks. SEP2.0 will also have improved future support for 802.15.4g, where the physical layer of the ZigBee/802.15.4 network is a sub-gigahertz radio at, say, 900 MHz for long-range outdoor telemetry or environments where the 2.4 GHz spectrum is congested. Support is also improving for other popular network technologies such as Ethernet.

Amongst the first SEP2.0 enabled products to hit the market will be Energy Service Portals (ESPs) which serve as a bridge between an energy utility’s communication infrastructure and the IP-based Home Area Network. These portals are provided to consumers by utility companies, and use the SEP2.0 Energy Services Interface profile to provide a bridge between the SEP1.x protocol used by most existing smart meters and the home’s IP-based network.

Zigbee Smart Energy

A ZigBee-enabled home energy management system can employ multiple Application Profiles to provide unified control of all home energy systems. For example, a smart home energy management system may use the Smart Energy (SE) profile to pass the utility’s load management and demand response messages to the home’s major loads and energy sources.

The Home Automation (HA) and RF for Consumer Electronics (RF4CE) profiles may then be used to communicate with Smart Appliances, lighting systems and other consumer-controlled products. Energy-aware homes will also employ a large number of end-point applications such as smart thermostats, in-home energy displays (IHDs), and tablet-based control panels that use SEP2.0-enabled ZigBee or Wi-Fi radio links to communicate with the home’s ESI and other elements of its energy management system.

SEP2.0-equipped network endpoints may also be implemented with the physical layer of the network using power line communications, networking smart appliances without RF spectrum congestion.

The ZigBee Alliance has created well-defined provisions for interoperability with, and upgrade paths from, the earlier SEP1.x standard to SEP2.0, which is good news for engineers looking to upgrade or to interoperate with existing SEP1.x technology. There is no significant increase in the processing power required in your hardware, although the key generation and exchange functions in the SEP2.0 security layer may be tough for 8-bit microcontrollers to handle unless they have security acceleration capability, handling the cryptographic maths in dedicated hardware.

Unfortunately, in terms of memory, SEP2.0 and the applications it supports require significant increases in both flash and RAM over what is required for most SEP1.x applications. Storing the code for a SEP1.x stack, a small application profile and a simple user application requires roughly 160 kb of flash in a typical microcontroller, plus 10-12 kb of RAM. Implementing comparable functionality under SEP2.0 requires about 256 kb of flash and 24-32 kb of RAM.

As an example of an existing hardware reference solution targeting SEP2.0, Texas Instruments provides an example consisting of the CC2533 802.15.4 RF system-on-chip, which runs the MAC/PHY layers of the SEP2.0 stack on its built-in 8051 core, combined with one of TI’s ARM7 Stellaris 9000-series microcontrollers as the application processor, running the remainder of the network stack and the application code.

Most of the microcontrollers in this powerful family include a fully-integrated Ethernet MAC, CAN interface, USB host controller, and enough memory and processing power to implement many simple SEP2.0 applications.

It is also worth considering some of the highly integrated single-chip solutions on the market such as the Texas Instruments CC2538, which integrates a 2.4 GHz 802.15.4 radio, ARM Cortex-M3 32-bit microcontroller core, hardware security acceleration for SEP2.0 and plenty of flash and RAM to support the ZigBee IP stack, SEP2.0 profile and application code with support for over-the-air firmware flashing capability for updates in the field, all in a single chip.

As you have just read, the new profile offers a great amount of promise in terms of functionality and convenience for the end user. Here at the LX Group our engineers have an excellent understanding of the Zigbee platform and have put this to use to create various systems for a wide range of customers – and we can do this for you too.

To get started, join us for a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisThe new Zigbee Smart Energy 2.0 Application Profile

FOR IMMEDIATE RELEASE – 1 of 1

LX Design House has been named in the Top 10 of Anthill’s SMART 100 Awards for the QuickFire Pyrotechnics Firing System

The winners of Anthill’s SMART 100 (2013) were published on Anthill’s site on 11 June 2013. LX Design House was announced as being in the Top 10 of Anthills SMART 100 index for their design of the QuickFire Pyrotechnics Firing System, which is being developed for Elite Fireworks. LX is an electronics design house based in Sydney at the Australian Technology Park.

Anthill’s SMART 100 recognises not just innovative, and unique products, but also ranks products based on their potential to achieve consumer adoption and commercial success. smart4

“We’re very excited to receive this prestigious award. Awards such as this, which recognise not only the innovative nature of the design but the ability for the product to be successfully commercialised really goes to the heart of what we are striving towards at LX.

We want our clients to be successful and to see their products being sold on a global scale. This affirms that our internal engineering and design standards are world class. In addition to this, we are all particularly excited for our client, Elite Fireworks, as this award really confirms what our client has been working towards for so long, recognition that their product is not just innovative but will be changing the pyrotechnics industry for many years to come” said Simon Blyth, Director and Founder of LX Group upon receiving the award.

The QuickFire Pyrotechnics Firing System is the first firing system in Australia to use ZigBee wireless mesh networking technology and can fire manually, semi-automatically or automatically, either hardwired or wirelessly. Communication between the devices is secure with encrypted data transmitted with at a frequency of 2.4 GHz DSSS and with RF transmission strategies. In addition to allowing control signals to be repeated across multiple wireless firing units, signals can be rerouted the next available firing unit instead of relying on one main transmitter. Some of the safety and continuity features include:

• an intelligent automatic show recovery function that can detect a system error and restart the controllers within three tenths of a second – and then continue, in sync with the show, and the soundtrack;

• enabling firing units to work independently from the master unit, each firing unit holding local copies of the firing instructions – eliminating firing delay and improving the reliability of the show;

• constant heartbeat monitoring and synchronisation – the wireless units remain in constant contact with the firing unit – and will re-establish communications links if this is lost, firing the next due cue, in sync with the show, and the soundtrack; and

• a dead-man switch that must be held in by the operator for a show to continue.

–End–

Contact:

LX Group, Neala Fraser, Operations Manager, Tel:  (02) 9209 4133  Email: [email protected]

More Information:

About LX Group, visit www.lx-group.com.au

About Australian Anthill SMART 100 2013 Awards, visithttp://anthillonline.com/quickfire-nsw-2013-anthill-smart-100/

About QuickFire Pyrotechnics Firing System, visit http://www.quick-fire.com.au/

Published by LX Group for itself and the LX Group of companies, including LX Design House, LX Solutions   and LX Consulting, LX Innovations

 

Muhammad AwaisLX Design House Ranked 5th in Australian Anthill SMART 100 Awards 2013

At the LX Group we say that smart energy is an exciting and important growth technology area, and that it encompasses and enhances a wide variety of existing and new technologies. Although many people consider energy to be a resource only limited by one’s capacity to pay the supplier invoice every three months – the ability to reduce energy consumption in an increasingly complex world is a communal goal. 

Smart energy technology can be applied to a wide variety of devices used in the domestic, commercial and industrial areas – and benefits can of course be found in not only reduced energy consumption, but also in some cases by a reduction in the costs of installation and maintenance of smart energy hardware. In saying that let’s examine a variety of smart energy applications and their benefits.

Smart street lighting

Since their first installation, the use of electric street lighting has been a prime candidate for the smart energy devices due to the sheer volume of lamps and their combined energy use. Recenlt the ability to determine the ambient light level and illuminate accordingly provides light when necessary as well as saving energy. Further enhancements include replacement of lamps with lower-power LED equivalents that allow for a wider range of display levels. Finally by taking advantage of Zigbee wireless networking – lamps can not only be controlled remotely, they can also report lighting status data as well as error situations to a central computer. This removes the need for public response to broken lights and regular patrols – saving the utility time and money.

Energy harvesting

As more industrial and commercial applications rely on sensors, wireless transceivers and small microcontrollers for monitoring and data transmission, one of the design challenges has been powering and connecting these items to their required host. With regards to data transmission itself – the challenges have been overcome with the proliferation of low-power wireless mesh and point-to-point networking. And microcontroller manufacturers have reduced consumption by great lengths – in some cases down to micro amps by reducing CPU speed and smart sleep modes. These sleep functions can help when the power harvesting is sporadic, or takes time to generate enough energy for operation – for example when enough is available, the microcontroller can “wake up”, perform an operation such as transmit sensor data, then resume sleep until the energy levels resume at which point the process repeats itself.

Energy to run these devices can be harvested in many ways, however the three prevalent methods are:

  1. Solar energy – a simple solution when the device is outdoors or can be wired to an external panel. A proven technology that can be used to charge various battery types and allows for 24/7 operation when the power drain is matched with an appropriate storage cell.
  2. Mechanical energy – it is possible to transfer the energy from vibration and deformations into electrical currents suitable for low-power devices. An idea solution for constantly moving situations such as line-haul freight trains, mining system conveyor belts, and wave/tidal energy generators. These would also include a rechargebale battery to avoid power loss during short periods of down-time.
  3. Thermal energy – Using sensors that consist of hundreds of tiny thermocouples, energy can be harvested from the difference between the ambient temperature and an external source of heat. These can include waste heat from industrial processes, climate-control systems and engine block heat. For example – with a sensor mounted on an area of 90 degrees Celsius, and an ambient temperature of 25 degrees – 10 mW of energy can be harvested – the equivalent according to sensor producer Micropelt of thirty AA cells per annum.

The Smart Energy Home

Domestic energy consumption is an issue for every householder, apart from rising energy bills the debate over climate change due to fossil-fuel energy sources and global warming has increasingly educated the population to reduce the energy consumption. The requirements to monitor consumption can be detailed due to the time of use and requriements for various appliances. Although utilities are installing smart meters which can offer various tariffs depending on the time of day – more can be done to assist the consumer.

The greatest advantage can be found by replacing appliances with new, energy-efficient units such as heat-pump electric hot water systems, however the cost can be substantial. A cheaper way is to offer real-time monitoring of each appliances’ energy use. This can be provided by a smart meter which can wirelessly transmit data to a receiver linked to a consumers’ PC or device – showing real-time consumption data. An option of increasing popularity is to sense the consumption of each major device in real-time – and in conjunction with time-of-use tariffs a true running cost can be shown – the greatest incentive to reduce energy use. These sensors can be fitted externall between the device and power outlet, or over time hopefully included within the device and working on a common Zigbee wireless standard. 

As you can see there are many methods of smart energy use, including generation, intelligent consumption and better devices. All of these methods and more can be harnessed and modified for your individual requirements. Here at the LX Group our team has a range of experience in smart energy key technologies, including:

  • Displays and various user interfaces

  • Logging and data management

  • Remote monitoring and control

  • Ultra-low power wireless systems including mesh networking topologies

  • ZigBee-based networking, using Ember, TI, Jennic and Microchip platforms

  • Low unit cost design and BOM cost optimisation

And the team at LX has won national and international awards for past ZigBee-based systems.

For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design. www.lxgroup.com.au

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

 

 

Muhammad AwaisLX Group discusses Smart Energy