All posts tagged: Bluetooth

Connected Technology & Wearables in Sports: A Helping Hand or Unfair Advantage?

How is IoT and Technology Impacting Sport, and Where Is The Future for Tech in Sport?


From the launch of Hawkeye technology in Tennis and Cricket in the early 2000s, to the controversy around the LZR swimsuit at the Beijing Olympics in 2008; to the current boom of wearables for sports and health monitoring, tech is becoming increasingly common in the world of sport.

Whether used for professional athletes to measure inputs such as gait, heart rate, time in motion or speed, or just as simple IoT devices for counting steps in the average walker, connected technology is changing the way we exercise. It’s impacting every element of sport and exercise from spectating, participation and competing, healthcare around sports, and sports as a commercial industry. 

But with connected devices, sensors, cameras and even virtual and Augmented Reality (VR and AR) now becoming more prevalent in sport, is this new tech wave a good or bad thing? And what are the considerations for developing a sports technology device?

Performance athlete running with metric symbols superimposed showing speed, location and energy

Jump to a section:

Types of Sports Technology

Developing a Wearable or Electronic Product for Sports

Does Connected Technology Create an Unfair Advantage?

How Does Sports Technology Benefit Athletes and Users?

Wider Benefits of IoT and Tech in Sports and Recreation

Types of Sports Technology 

One of the biggest sectors in sports technology is of course,  wearables. From wrist wear GPS trackers and heart monitors, to fully connected sports analytics vests, the sports wearables market was predicted to be worth nearly $15 billion by this year. 

Connected, small form sensors in watches, vests, head gear or even footwear can provide invaluable data to athletes and their support staff. It is small wonder that this is one of the fastest growing uses of smart technology and electronics in sport.

Aside from wearable technology, cameras and drones with advanced computing functionality have seen increased use in competitive sports. An example is the Hawkeye System, used in tennis and more recently in international soccer competitions as a goal line monitor. 

There are also technologies for monitoring and providing feedback on injuries (or the potential for injury) now becoming more popular. At LX, we recently worked with our client Headsafe to develop a connected, portable brain assessment device that can help medical professionals determine likelihood of concussion. Such devices can be used for preventative activities, by examining risk factors in an athlete’s performance that could lead to injury. They can also be used to help with diagnosis of injury, or provide data insights for ‘return to activity’ windows in recovering athletes. 

Alongside from the commercial ubiquity of hardware-based tech products, the rise of software and big data in sport has been just as transformational across the industry. From algorithms for assessing relative player value, to real time game analysis and new ways of engaging with audiences at home and in the stadium, data now underpins how many of us interact with competitive sport. 


Developing a Wearable or Electronic Product for Sports

With an increasingly competitive and fragmented market, and new restrictions on tech being posed by health and legal bodies, what are the considerations when developing a wearable or piece of electronic technology for the sports market?

Firstly, engineers and companies want to consider where the tech is being used. Is it a training aid, or something to be used in live games? If the latter, then what are the laws or code of conduct that governs technology use for that sport in that country? What are the legal considerations on an international level?

More practically, you may need to consider what type of activity the device is being used for. If it is remote sensing or monitoring and not a wearable, then likely size and weight are less of a consideration. Similarly, if it’s a tracker to be attached to a watercraft or bike, considerations around IP and IK rating would be important. 

If you are designing a connected wearable, however, then small form or low profile devices are usually desirable. This is so that they do not inhibit the athlete, or have the potential to cause injury. Particularly in contact sports such as rugby, polo or American football, considerations around impact; not only in regard to hardware and industrial design to protect the device, but also to ensure the device does not injure players, is of vital importance. 

Expanding on IP rating, for water sports or winter sports where temperature is a factor, does the device need to be able to operate under extremes of temperature? And if out on the water, or in use in more remote locations, what kind of network connectivity is best? For example, the network used for data transmission on a tracker for an endurance runner out in rural areas is likely to be different to that for a soccer player in an urban stadium, with access to wifi coverage. 

Finally what is the function this device is performing? How accurate does reporting data need to be, and what is the required frequency of transmission? To use the endurance runner example, GPS tracking might only need to be approximate with reporting every hour or so. In contrast, a tennis player might need heart rate, distance travelled and serve speed reporting in near real-time.  

Ultimately, these environmental and use case factors will determine the look, size, weight and network capability of a connected sports device. 


Do you have an idea for a connected sports wearable or IoT device you’d like to discuss? Contact us today for an obligation free discussion. 

Close up of tennis racket resting on net with partial view of player in background

Does Connected Technology Create an Unfair Advantage?

Since its introduction into sport, tech has created division and courted controversy among professionals, fans and athletes. This is because there are often grey areas around whether a piece of technology gives an athlete an advantage, or is simply allowing them to reach their natural potential.

Again the difference between tech used in training versus that used in live sports is an important distinction. Both can give players/athletes an advantage, but it is harder to police or legislate against tech used in training. Consider a boxer who has access to an AR/VR program of an opponent’s fighting style prior to a fight. That athlete is able to plan and train better than an opponent without this technology. He or She may still lose the fight, but was it a fair fight? What is the difference between having access to that technology and having a more experienced coach? 

For use in live competition, we can look at swimmers at the 2008 Olympics who adopted the LZR Speedo suit designed by NASA and consistently broke records in their class. Research showed the suit reduced drag by up to 25% and provided a material advantage to the point where it was banned in future competitions.

Was this tech use fair to the other swimmers in that event? Perhaps so, if everyone had access to the same equipment and it was a choice whether to use it or not. But what about the previous holders of those records? Is it fair they were stripped of that title, arguably on the basis of new emerging technology, rather than an increase in natural talent? 

Furthermore, when we look at international competitions like the Olympics, there is already a disparity between the OECD countries and developing nations. This is evident in terms of access to funding, training facilities and personnel, healthcare and equipment. Does the introduction of performance enhancing technologies simply further widen the gap between the ‘haves’ and ‘have nots’? At a certain point it could become pointless for some countries to compete if the margin between a podium position and missing out is based on access to technology.  

More generally in international competition, ‘Techno doping’ is becoming an increasingly contentious issue. Often, the impact of technology is not apparent until medals are won and records broken, like with the LZR suit. At this point it’s harder to say someone won unfairly because no one knew about a piece of technology in order to ban or restrict its use prior to the competition. With governing bodies often behind the tech curve when it comes to legislation against wearables, clothing and equipment used in competitions, there can be a lot of back and forth about what is allowed and what isn’t. This only serves to further confuse the issue for training teams, engineers and athletes, and can leave room for ‘wilful ignorance’ around whether technology should be verified before use in live competition.

Woman checks a sports wearable watch or fitness tracker

How Does Sports Technology Benefit Athletes and Users?

Technology can be used to help prevent and treat injury and chronic conditions in athletes, by monitoring their performance over time and providing early warning alerts for risks. This is something that manual observation is unlikely to achieve and, in this way, technology has been a real benefit to sports. 

Similarly, we now have the ability to access data in near real-time about an athlete’s performance. This allows for post activity analysis like never before, and this wealth of data is helping us to become better athletes, coaches, physicians and team mates. Even for the average person, the psychological impact that data reporting has on motivation to exercise is powerful. Studies have shown that step counters and social media sharing for apps like Strava keep us on track with fitness and weight loss goals

Technology also benefits sports professionals by giving them access to environments they might not otherwise be able to create. Through technology like AR and VR, athletes can be training even in an off season, or recreate games to see where they could have changed a play, or experience the associated psychological pressure of a live audience. 

In some ways, the rise of technology through IoT sensors and wearables reporting on performance have levelled the playing field. Access to data, AI and the ability to monitor key inputs removes some of the human element of coaching and the impact that a good or bad trainer can have on performance.  Therefore, when one player or team can access and utilise the same level of insight as another, they have equal opportunity to use it for performance improvement, regardless of the quality of their coaching staff. 

Taking this further, the value of the data collection from such technology cannot be understated. Although it comes with its own issues around privacy, anonymisation, and the impact that such data could have on an athlete’s market value if made publicly available, this data can do a lot of good. From aggregation of data and machine learning, we can develop better training programs, help prevent injury through increased understanding of the way sports impact the body, and drive increased performance. 

Technology can also help us create better equipment. Notwithstanding the issues around fair access to this, data from wearables and connected sensors could provide the architecture for a more streamlined racing bike, a faster rowing boat, or a tennis racket that increases serve speed. 

GPS Sports technology for location monitoring

Wider Benefits of IoT and Tech in Sports and Recreation

There is an obvious benefit to increased knowledge, and the ability to make data-informed decisions as a result of new technology. Whether that new data is used to improve training, performance, equipment and health/injury care in sport, it can materially impact both the individual and the community. And although most of these advances emerge at a professional level initially, the results generally filter down to education and personal training or more amateur level sports players. 

Outside of the educational benefits, sports technology is helping us enjoy watching sport in new ways as well. From connected tech that allows stadium spectators to listen to a soccer referee, to devices that allow cricket players to interact directly from the field, we can get closer to the action than ever before. 

And perhaps one of the greatest benefits of sports technology is that it enables better access to sport for differently abled people. From advanced engineering that allows para athletes to compete more safely in events like weight lifting and contact sports, to coaching environments for those with conditions like autism, sport has always been a connecting force, and technology is only helping that. 

disabled athelete with prosthetic performance blade



Whilst smart technology, connected wearables and computer driven cameras come with a whole host of potential risks and  considerations, overall, technology is bettering the field of play for sporting activities. 

Sport brings us together, provides entertainment, keeps us fit and pushes us to excel. Like engineers with technology, athletes are always looking to push the boundaries of what is possible, and it feels inevitable that tech and sports will continue to converge in the future.

The issues around data privacy and access, legislation for fair and safe competition, and how these advances impact the wider community are all important factors in sports tech and we cannot afford to ignore them. But at the same time, it’s exciting to think about what might be possible in the future with sports technology. Will we see completely new sports born from tech? What about new ways of viewing sports, for example an ‘athlete’s eye view’ of the field? The possibilities seem endless!

Muhammad AwaisSports Technology and Smart Devices in Athletics

The newest upcoming iteration of the Bluetooth specification – Bluetooth 5 – has recently been announced by the Bluetooth Special Industry Group – the industry consortium responsible for developing, standardising and promoting Bluetooth wireless technology.

Bluetooth 5 is expected to be released around the end of this year or the beginning of 2017 – and will offer significant increases in performance with up to four times the range, double the data rate and an eight-fold increase in broadcast messaging capacity.

This new evolution of the Bluetooth standard is all about doing more with less, offering rich new experiences which are compatible with customer expectations in today’s Internet-of-Things market – including greater bandwidth, a longer range while also retaining the very low power consumption of Bluetooth 4.0.

The Bluetooth standard has not had a major version bump since the release of Bluetooth 4.0 in 2009, and the Internet-of-Things market has clearly come a long way in the last seven years. One of the main goals of Bluetooth 5 is to remain at the forefront of the fast-moving Internet-of-Things space, both in terms of interoperability and back-end RF network technology as well as the front-end use cases and experiences that consumers expect from modern IoT products and technologies.

The “Bluetooth 4.0” version nomenclature has also been dropped, with a focus on a more streamlined version branding that is easier for the average customer to understand as a major technology revision when they’re shopping for new phones or devices.

While the exact range may vary depending on the hardware design and the power budget that is available, it may be possible to expect a range of up to 400 meters from a Bluetooth 5 connection.

Bluetooth 5 is designed with Internet-of-Things applications in mind, and the extended range that it offers will enable ubiquitous, reliable IoT connections across full-home and building and outside-the-building use cases where older Bluetooth devices are not practical, greatly opening up the potential applications for Bluetooth connectivity.

According to the executive director of the Bluetooth SIG, “Increasing operation range will enable connections to IoT devices that extend far beyond the walls of a typical home, while increasing speed, supporting faster data transfers and software updates for devices”, and “Bluetooth 5 will transform the way people experience the IoT by making it something that happens simply and seamlessly around them.”

With these technical improvements, the Bluetooth SIG aims to make Bluetooth-based IoT experiences seamless and ubiquitous, without users needing to think about range or device pairing.

As well as making the pairing process much easier for Bluetooth devices such as wireless speakers or keyboards, the significantly increased broadcast capacity in Bluetooth 5 is aimed at making beacons, location markers and other connectionless” Bluetooth services much more powerful and valuable, with the ability to transmit more, richer information as part of an effortless and seamless IoT experience.

According to the Bluetooth SIG, this will “redefine the way Bluetooth devices transmit information”, moving away from the app-paired-to-device model to a seamless and more IoT-compatible connectionless model where there is less need to download an app, pair devices together and connect the app to a device.

The increased bandwidth that Bluetooth 5 provides means that devices can be more responsive and can transfer their data faster, and increased broadcast capacity makes “connectionless” Bluetooth services like beacons, location-aware information and targeted advertising much more capable and powerful.

These improvements allow Bluetooth 5 to open up more potential Bluetooth applications and help Bluetooth to be an integral part of an accessible, interoperable IoT ecosystem.

Connectionless Bluetooth beacon technology has value in applications such as museums, galleries and other cultural and tourism institutions, providing location-aware information for navigation, allowing people to find local businesses or services near them – or for location-aware marketing or promotions.

However, excessive use of Bluetooth notifications for advertising, without requiring authentication or device pairing, may raise challenges in terms of customer acceptance and ethics and potentially creates a whole new avenue for ubiquitous spam.

Other applications such as industrial logistics and tracking inventory in warehouses are potentially valuable too – there is enormous scope for creative new applications of Bluetooth with these new capabilities. amazon2

Furthermore, these significant range and performance benefits are achieved without any significant increase in power consumption compared to existing iterations of the Bluetooth Low Energy standard with its already industry-leading power efficiency.

This means that Bluetooth 5 remains attractive, as with present Bluetooth implementations, in applications where power efficiency and long battery life is important, and the powerful new capabilities of Bluetooth 5 remain compatible with tiny, battery-operated beacons that are practical to deploy for a long time without maintenance or replacement.

By now you must realise that Bluetooth is still relevant and a feature that may be of benefit to your existing or new products. If this is of interest – there is a method of product development that is rapid and successful. Here at the LX Group we have the systems in both hardware and software to make your IoT vision a success.

We have end-to-end experience and demonstrated results in the entire process of IoT product development, and we’re ready to help bring your existing or new product ideas to life. Getting started is easy – click here to contact us, telephone 1800 810 124, or just keep in the loop by connecting here.

`LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in IoT embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisBluetooth Version 5 – for the Internet of Things

With the advent of IPv6 taking hold in the Internet of Things, it’s pleasing to see more entrants into the marketplace from existing and new players, and one example of this is Nordic Semiconductor’s Bluetooth Low Energy nRF51 IoT SDK.

This is a new Software Development Kit for the development of Internet-of-Things applications using Internet Protocol version 6 (IPv6) over Bluetooth Low Energy (Bluetooth SMART), enabling end-to-end IP-based communication for Bluetooth IoT devices.

Nordic’s SDK is an IPv6-ready complete Internet Protocol suite for their nRF51-series of devices, bringing native IPv6 support to Bluetooth Low Energy applications, letting them talk directly to cloud services and other Bluetooth-connected Internet-of-Things devices over IP-based networks.

The SDK is suitable for networks of Nordic’s nRF51x wireless connectivity systems-on-chip, offering an IPv6-capable Bluetooth Low Energy software stack that provides drivers, libraries, examples and APIs to allow you to easily get started with development – all freely ready for engineers to download now from Nordic.

Furthermore the SDK enables large-scale, distributed, cloud-connected, heterogeneous network deployments for smart home, industrial, and enterprise automation applications, logistics, access control, and cloud services – and enables wireless communication between Internet services and Bluetooth-enabled IoT “things”.

With native IP networking down to the Bluetooth end-node devices, this means that Bluetooth Low Energy devices can communicate with each other via “headless” routers and out over the Internet. A Bluetooth Low Energy device can therefore communicate with other devices using other IPv6-enabled wired or wireless networking technologies, such as Wi-Fi, Ethernet, or 802.15.4/6LoWPAN, to form a heterogeneous network.

Unlike some other IoT solutions based on proxy servers, proprietary network bridges or gateways, Nordic’s nRF51 IoT SDK is based entirely on open standards and extends IP addressing all the way to the end-node device.

As a reference design and demonstration platform for their Bluetooth Low Energy IoT SDK, Nordic provides their “IPv6 over Bluetooth Smart Coffee” demonstration – an example of a wireless, IPv6 Bluetooth-enabled Internet-of-Things coffee machine based on Nordic’s IoT SDK:

The coffee machine, being IP enabled, has its own IPv6 address and is directly addressable from the Internet over IPv6. Native support for IPv6 allows the coffee machine and the cloud application to use the same protocol without any need for proxy servers or translations, allowing direct connectivity to MQTT, as the application protocol, based on top of TCP at the transport layer.

The SDK includes a 6LoWPAN IPv6-over-Bluetooth Low Energy adaptation layer and a complete Internet Protocol suite – a protocol stack that includes IPv6 and ICMP, with UDP and TCP protocols supported at the transport layer, along with CoAP and MQTT support at the application layer, giving you a powerful suite of different protocols which are useful for IoT applications.

A compact memory footprint means that the complete protocol stack can be run on a nRF51-series device in a single-chip configuration without extra memory, enabling developers to minimise power, size and cost of their Bluetooth-connected IoT hardware products.

Nordic’s Bluetooth Low Energy IoT SDK also supports the Internet Protocol Support Profile (IPSP), a profile which is in the process of being adopted as a standard by the Bluetooth Special Interest Group.

The SDK includes an IPv6 stack, including UDP socket APIs, an ICMPv6 (ping) module, and support for multiple IPv6 addresses. The included 6LoWPAN and IPSP libraries support 6LoWPAN compression and decompression, 6LoWPAN node role support, packet flow control, IPv6 prefix management, and the ability to use a third-party IPv6 stack if you choose. A CoAP (Constrained Application Protocol) library is also provided with the SDK, providing support for all the basic CoAP message types.

Complementing the SDK, Nordic is also providing examples that configure the nRF51 device as a Bluetooth Low Energy 6LoWPAN node, as well as a reference software platform for setting up a headless router that supports IPv6 and Bluetooth Low Energy using a Raspberry Pi running Raspbian Linux combined with a Bluetooth LE USB dongle, as well as a range of other application examples.

Nordic provides a reference Raspbian Linux image for this example router application which you can download, ready to go. The combination of this headless router platform, the new nRF51 Development Kit and the nRF51 IoT SDK provide developers with a powerful and complete platform for developing Bluetooth Low Energy based Internet-of-Things applications based on Nordic nRF51 series devices.

The Bluetooth Low Energy IoT SDK is suitable for use with Nordic’s nRF51 Development Kit (which supports Bluetooth Low Energy, ANT, or generic low-power 2.4 GHz wireless communications using the various different chipsets in the nRF51 family), or the nRF51 USB dongle.

nordic nrf51 1

The SDK is also suitable for use with the nRF51422 multi-protocol Bluetooth Low Energy / ANT system-on-chip and the nRF51822 multi-protocol Bluetooth Low Energy system-on-chip, the nRF51822 Evaluation Kit, or any other development tools or platforms from third parties, as long as they are based around the nRF51822 Bluetooth Low Energy SoC, the nRF51422, or any other devices in the nRF51 family.

Nordic provides support and community discussion for users of their platform online, through the Nordic Developer Zone forums and Web resources, nRFready demo applications for Bluetooth Low Energy-enabled phones or other mobile devices, and a range of other resources provided on their website.

Nordic’s new IPv6 system offers new and possibly existing IoT-based products the entrance into the next generation of device connectivity and as part of this the team at LX can partner with you for mutual success. Getting started is easy – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.


Muhammad AwaisIPv6 over Bluetooth with Nordic’s new nRF51 SDK

The new PSoC-4 BLE series of programmable system-on-chip devices from Cypress enables system designers to create low-power, sensor-based wirelessly-connected systems using integrated programmable analogue front ends, programmable digital peripherals – industry-leading CapSense touch sensor capability for user interfaces all integrated together with a Bluetooth 4.0 (Bluetooth Low Energy) radio and an ARM Cortex-M0 microcontroller in a compact and cost-effective single-chip solution.

This highly-integrated one-chip Bluetooth Low Energy platform enables you to easily design low-power, wirelessly-connected solutions that are particularly well suited to real-time, low-power Internet-of-Things applications.

Bluetooth Low Energy has several potential benefits over Wi-Fi in some wireless connectivity applications, including minimal connection latency and very good energy efficiency, allowing for “always-on” smart, connected devices that run off small batteries for many months or even more than a year while seamlessly being embedded into everyday physical objects and the environment around us.

This makes the platform ideal for IoT end-node applications despite offering data rate and throughput that is lower than in Wi-Fi-based solutions. By combining the Bluetooth Low Energy radio with a 32-bit ARM Cortex-M0 processor in a single chip and adding flexible general-purpose analogue and digital peripherals – the PSoC 4 BLE platform aims to provide the right combination of processing horsepower and low power consumption with flexible and precise interfaces for external peripherals such as ADCs and sensors.

You can interface your Bluetooth-connected system with multiple different sensors easily by integrating custom analogue front ends and programmable digital peripherals around the high-performance 48 MHz ARM Cortex-M0 processor core, with no need for any extra chips.

The PSoC 4 BLE platform includes the Bluetooth Low Energy Protocol Stack and Profiles in an intuitive and easy-to-use GUI-based configuration tool, simplifying the design of your BLE systems. The PSoC 4 BLE chipsets reduce the complexity of RF antenna-matching network design by including an integrated balun, which also helps reduce the component count and the PCB footprint of your system.

A PSoC 4 BLE development kit has been designed by Cypress to allow for maximum flexibility in your design whilst also being as easy to use as possible and offering compatibility with standard Arduino-compatible “shields” when used in conjunction with appropriate software.

This development kit is built around easy to use PSoC 4 BLE and PRoC (Programmable Radio-on-Chip) BLE development modules which are complete, self-contained systems that include the main chip with all its I/O pins exposed for development, a tuned PCB antenna on board, power circuitry and easy access to programming pins.

You can simply hook up some sensors, LEDs and a coin-cell battery and you’re ready to go with your complete single-chip Bluetooth LE-enabled wireless sensor network device with analogue and digital acquisition on board. You can even design reliable, sophisticated and sleek user interfaces with Cypress’ CapSense capacitive touch-sensing technology, delivering superior noise immunity, water tolerance and proximity sensing in touch-sensitive applications such as user control panels.

 Furthermore, these modules are FCC certified, so they can be deployed in your commercial products without requiring the certification that you may require for a bespoke RF design to meet FCC Part 15 regulatory requirements. These Cypress PSoC 4 BLE modules also meet CE and Canadian RSS-210 radio certification standards, so they’re ready to go into these markets in your commercial designs.

Cypress Two

 The Bluetooth Low Energy Pioneer Kit from Cypress enables customers to evaluate and develop BLE projects using the Cypress PSoC 4 BLE and PRoC BLE devices. The low-cost BLE Pioneer Kit includes example projects for common BLE profiles and example smartphone apps for both iOS and Android with full source code provided, allowing you to get up and running in no time with the development of Bluetooth Low Energy solutions for IoT applications.

 You can design complete, sensor-based BLE systems easily with Cypress PSoC Creator, taking advantage of its vast catalogue of pre-characterised and production ready PSoC firmware “components” which enable you to concurrently design hardware and firmware with easy drag-and-drop assembly of modular software. For example, the Bluetooth Low Energy 4.1 specification has been abstracted into the new Bluetooth Smart “component” in PSoC Creator.

 The Cypress PSoC 4 BLE development kit includes a Bluetooth Low Energy USB dongle that pairs with the CySmart BLE master emulation tool from Cypress, converting your Windows PC into a powerful Bluetooth LE debugging environment.

 The kit design and layout allows for customers to easily develop embedded solutions that require both mixed-signal analog and digital capabilities along with wireless Bluetooth LE connectivity and highly optimised power efficiency without sacrificing microcontroller performance.

 The development kit supports system-level designs using the Cypress PSoC Creator development environment, which includes numerous example projects to enable you to get started creating Bluetooth Low Energy connected, mixed-signal analogue embedded designs such as wireless sensor networks and IoT product designs as easily and as quickly as possible.

 If this platform is of interest to your organisation – and you need an experienced partner to progress with – join us for an obligation-free and confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

 LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

 Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.


Muhammad AwaisRealising IoT devices with the new PSoC-4 BLE from Cypress

The Bluetooth Special Interest Group has recently announced the publication of the Bluetooth 4.1 Specification with some interesting improvements to the standard, which greatly increase the usability of this wireless technology in devices for the “Internet of Things”, which offers new applications that allow such devices to serve as both hub and peripheral devices.

This paves the way for Bluetooth 4.1-enabled devices such as sensors to connect directly to the Internet. It also allows devices such as fitness dataloggers and headsets to collate data from sensors such as temperature sensors and heart rate monitors over Bluetooth networks then report back to a smartphone or tablet with their collected data. In turn, those devices could be used as sensors that other devices can communicate with and pull data from.

This new profile is the first major update of the Bluetooth specification since version 4.0 was released in 2010, including the Low Energy specification, a subset of version 4.0. The version 4.1 updates are all software related, so it is possible for over-the-air firmware updates to upgrade existing Bluetooth 4.0 systems with new firmware, with no hardware changes or replacement, to make them Bluetooth 4.1 compatible.

Bluetooth 4.1 adds support for bulk data transfers at higher data rates, so that information collected from sensors over a period of time can be downloaded in bulk from multiple sensors. Bluetooth is still a low data-rate protocol compared to, say, Wi-Fi or Ethernet, but as Bluetooth is expected to handle ever-larger streams of data from embedded sensors this is a useful improvement – downloading data from sensors to a datalogging appliance might take, say, a few seconds instead of 10 or 20 for existing systems.

Bluetooth 4.1 allows Bluetooth devices to act as both a peripheral device and a hub at the same time, allowing a Bluetooth device that may have previously been networked with a smartphone or tablet to itself act as hub for other Bluetooth peripheral devices.

For example, your Bluetooth 4.1 enabled smart watch might be able to grab weight information logged from a Bluetooth-enabled scale and display it for you as well as being able to pass that data along to a smartphone. Bluetooth 4.1 also adds improvements to the sleep-wake cycle of the Bluetooth radio, allowing Bluetooth devices to automatically connect more easily (if allowed) without manual intervention.

Another example could be a bathroom scale that can automatically connect and download the distance walked from your Bluetooth-enabled pedometer or exercise tracker when you walk into the bathroom.

Bluetooth 4.1 improves coexistence between Bluetooth devices and 4G Long Term Evolution (4G LTE) cellular devices, to prevent potential interference. Although this is not a significant problem for Bluetooth 4.0 devices today this was considered to be a potential problem in future as more and more Bluetooth 4.0 devices are in use, talking to 4G connected smart-phones or tablets.

The new specification also increases the time-out period between devices, so that removing a Bluetooth device (such as your phone, for example) outside the proximity of another Bluetooth device it is connected to for a short moment and then back again may not mean that the Bluetooth connection has to be reconnected, improving user experience.

Furthermore it also lays the groundwork for IP-based connections between Bluetooth devices, in the same way a Wi-Fi router connects to multiple Wi-Fi devices, giving Bluetooth devices a way to talk directly to the Internet. Plus version 4.1 adds a standardised way to create a dedicated channel which could be used for IPv6 communications over Bluetooth in the future, enabling the possibility of native IPv6 networking from the Internet down to the LAN right down to wireless sensor nodes, in a similar way to how 6LoWPAN enables this type of connectivity for 802.15.4 wireless networks.

However, adding IPv6 connectivity to Bluetooth devices may substantially increase the power budget of battery-operated devices, especially Bluetooth Low Energy devices designed for extreme power efficiency, so this may not be an appropriate choice in all cases.


Such Internet connectivity directly to Bluetooth devices opens up interesting potential for the future development of Bluetooth, for example phone calls made over VoIP directly to a person’s Bluetooth headset, or the remote viewing of health data from medical sensor devices by healthcare professionals.

These improvements to the Bluetooth standard, such as IPv6 support, the ability to act as a hub instead of only as a peripheral, better radio sleep-wake cycles, timeout changes and improved data rates make Bluetooth 4.1 easier to use in the development of networks of wireless, power-efficient networked devices that aren’t intended to always be paired directly to a single Bluetooth enabled smartphone or tablet – in other words, Internet-of-Things networks and devices.

As you have just read, the new Bluetooth profile offers a great amount of promise in terms of functionality and convenience for the end user. Here at the LX Group our engineers have an excellent understanding of many wireless platforms – including Bluetooth – and are ready to integrate it with your new and existing products.

To get started, join us for a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisBluetooth for the Internet-of-Things

The Bluetooth wireless data protocol has been in use for over ten years, and in recent time the new low energy standard has been introduced. This gives designers another option for wireless connectivity between devices with an extremely low power consumption. In the following we examine what it is, the benefits and implementation examples.

Bluetooth LE (for “low energy”) is aimed at novel applications of short-range wireless communication in connected Internet-of-Things devices for medical, fitness, sports, security and home entertainment applications, and was merged into the main Bluetooth specification as part of the Bluetooth Core Specification v4.0 in 2010.

Also known as “Bluetooth Smart”, it enables new applications of Bluetooth networking in small, power-efficient Internet-of-Things devices that can operate for months or even years on tiny coin cell batteries or other small-scale energy sources. Bluetooth LE devices offer ultra-low power consumption, particularly in idle or sleep modes, multi-vendor interoperability and low cost, whilst maintaining radio link range that is sufficiently long enough for the intended applications.


The Bluetooth LE protocol is not backwards-compatible with the “classic” Bluetooth – however, the Bluetooth 4.0 specification does allow for dual-mode Bluetooth implementations – where the device can communicate using both classic Bluetooth and Bluetooth LE. Whilst Bluetooth Low Energy uses a simpler modulation system than classic Bluetooth, it employs the same 2.4 GHz ISM band, allowing dual-mode devices to share a common antenna and RF electronics for both Classic and Bluetooth LE communication.

Small, power-efficient devices like wearable athletic and medical sensors are typically based on a single-mode Bluetooth LE system in order to minimise power consumption, size and cost. In devices like notebooks and smart phones, though, dual-mode Bluetooth is typically implemented, allowing communication with both Bluetooth LE and classic Bluetooth devices. When operated in Bluetooth LE mode, the Bluetooth LE stack is used whilst the RF hardware and antenna is usually the same set of hardware as used for classic Bluetooth operation.

Devices using Bluetooth LE typically have a power consumption, for Bluetooth communication, which is a fraction of that of classic Bluetooth devices. In many cases, devices can operate for a year or more on a single coin cell. This potentially makes Bluetooth LE very attractive for Internet-of-Things networks, telemetry and data logging from environmental sensor networks, for example.

Since many modern consumer devices such as mobile phones and notebooks have built-in Bluetooth LE support, data can be delivered directly to the user’s fingertips from the Bluetooth sensor network with no need for an intermediary gateway or router as would be required for an Internet-of-Things network employing other technologies such as 802.15.4 ZigBee. This direct interoperability with a large installed base of smart phones, tablets and notebooks could potentially be a very significant attraction of Bluetooth LE networks in wireless sensor network and Internet-of-Things applications.

An active Bluetooth radio has a peak current consumption on the order of about 10 milliamps, reduced to about 10 nanoamps (ideally) in sleep mode. In a Bluetooth LE system, the objective is to operate the radio with a very low duty cycle on the order of about 0.1-0.5%, resulting in average current consumption on the order of 10 microamps. At an average current consumption of 20 microamps, such a system could be operated off a typical CR2032 lithium coin cell (with a charge capacity of 230 milliamp-hours) for 1.3 years without battery replacement.

The lower power consumption of Bluetooth LE is not achieved by the nature of the radio transceiver itself (since the same RF hardware is typically used, in dual-mode Bluetooth devices), but by the design of the Bluetooth LE stack to allow low duty cycles for the radio and optimisation for transmission in small bursts – a Bluetooth LE device used for continuous data transfer would not have a lower power consumption than a classic Bluetooth device transmitting the same amount of data.


The Bluetooth specifications define many different profiles for Bluetooth LE devices – specifications for how a device works in particular families of applications. Manufacturers are expected to implement the appropriate profiles for their device in order to ensure compatibility between different devices from different vendors. A particular device may implement more than one profile – for example one device may contain both a heart rate monitor and a temperature sensor. Here is a non-exhaustive list of a few different Bluetooth LE profiles in use:

  • Health Thermometer Profile, for medical temperature measurement devices.
  • Glucose Monitor Profile, for medical blood glucose measurement and logging.
  • Proximity Profile, which allows one device to detect whether another device is within proximity, using RF signal strength to provide a rough range estimate. This is intended for security applications as an “electronic leash”, allowing the detection of devices being moved outside a controlled area.
  • Running Speed and Cadence profile, for monitoring and logging athletic performance.
  • Heart Rate Profile, for heart-rate measurement in medical and athletic applications.
  • Phone Alert Status Profile, which allows a client device to receive notifications (such as an incoming call or email message) from a smart phone. As an example, this is employed in the Pebble smart watch.

The Bluetooth LE shows a lot of promise, and with a minimal chip set cost gives the designer another cost-effective wireless protocol. And if this meets your needs but you’re not sure how to progress with a reliable implementation, we can partner with you to take care of this either in revisions of existing products or as part of new designs. With our experience in retail and commercial products we have the ability to target your product’s design to the required end-user market and all the steps required to make it happen.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Muhammad AwaisLX Group discusses Bluetooth Low Energy

Wearable computing – the use of personal computers, displays and sensors worn on one’s person – gives us the potential for advancement in human-computer interaction compared to traditional personal computing – for example the ability to have constant access and interaction with a computer – and the Internet, whilst going about our daily activities.

This could be considered the ultimate in multitasking – the use of your computing device at any time without interrupting your other activities. For example, the ability to read an email or retrieve required information while walking or working on other tasks. Wearable computing potentially offers much greater consistency in human-computer interaction – constant access to the computer, constant connectivity, without a computing device being used in an on-and-off fashion in between other activities.


Once contemporary example of this is the new Google Glass, which represents an advanced, sleek, beautifully designed head-mounted wearable computer with a display suitable for augmented-reality applications – or just as an “ordinary” personal head-mounted display. Even before its public release, the frenzy surrounding Google Glass amongst technology enthusiasts demonstrates the potential level of market demand for wearable computers.

However, with a price of at least US$1500 price tag of Google Glass, (at least for its “Explorer Edition” beta version) this leads many to consider what potential might exist for the deployment of wearable computing and wearable sensor-network technologies – however at a lower cost.

One example is the category known as “Smart Watches” such as the Sony SmartWatch and Pebble Technology’s “Pebble” e-Paper watch – which both offer constant, on-the-go access to information from the Internet – and thus become a member of the Internet of Things – at a glance of the wrist. Text messages and email notifications are amongst the most simple, common examples of data that can be pushed to a smart watch, but the display of information from a multitude of other Internet-connected data streams is possible.

With the growing popularity and increasing hardware capabilities of smart phones, it is increasingly taken for granted that a smart phone carried on one’s person can act as a gateway between the Internet (connected via the cellular networks) and other smaller, lower-power wearable computer or sensor devices worn on the body and connected back to the smartphone via standard data links such as WiFi or Bluetooth. In using the smart phone as an Internet connection, the size, price and weight of the wearable device can be significantly reduced – which also leads to a considerable reduction in cost.

Furthermore, apart from providing mobile Internet connectivity, the smart phone can also provide a large display and an amount of storage capacity – which can be harnessed for the logging, visualisation and display of data collected from a network-connected sensor node wearable on one’s body, or a whole network of such sensor nodes distributed around different personal electronic devices carried on the person and different types of physical sensors around the body.

The increasing penetration of smart phones in the market and the increasing availability and decreasing cost of wireless radio-networked microcontroller system-on-chips, MEMS glass2
sensors and energy efficient short-range wireless connectivity technologies such as Bluetooth 4.0 are among some of the factors responsible for increasing the capabilities of,
and decreasing the cost of, wearable computing and wearable Internet-of-Things and sensor platforms.

Speed and position loggers, GPS data loggers and smart pedometers intended for logging and monitoring athletic performance, such as the Internet-connected, GPS-enabled,
Nike+ system; along with biomedical instrumentation and sensor devices such as Polar’s Bluetooth-connected heart rate sensors are other prominent examples of wearable Internet-of-Things devices which are attracting increasing consumer interest on the market today.

Combined with display devices such as smart watches, smart phones and head-mounted displays such as Google Glass. these kinds of wearable sensors create a complete wearable machine-to-machine Internet-of-Things network that can be self-contained on one’s person. Which leads us to the next level of possibilities – what do your customers want a device to do? And how can it be accomplished? And do you have the resources or expertise to design, test and bring such a system to the market?

It isn’t easy – there’s a lot of technology to work with – however it can be done with the right technology parter. Here at the LX Group we have the experience and team to make things happen. With our experience with sensors, embedded and wireless hardware/software design, and ability to transfer ideas from the whiteboard to the white box – we can partner with you for your success.

We can create or tailor just about anything from a wireless temperature sensor to a complete Internet-enabled system for you – within your required time-frame and your budget. For more information or a confidential discussion about your ideas and how we can help bring them to life – click here to contact us, or telephone 1800 810 124.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies design.

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWearable Computing and the IoT

What is Bluetooth 4.0?
The fourth version of the popular Bluetooth technology is first seen on the iPhone 4S. If you asked any user, most of them LX's Bluetooth technologywould be happy with Bluetooth 2.0. Meanwhile, Bluetooth 3.0 applications are very hard to find. If this is the case, why do we need a Bluetooth 4.0?

The Bluetooth wireless standard is a brainchild of Ericsson and was first released in 1994. Since then, it has found its way on mobile devices mostly for use in wireless headsets and headphones. It is also the most common way to send files between phones in short distances. Although not all phones support all available Bluetooth profiles, exchanging data between any phone brands was made easy because of it.

Previous Bluetooth Versions
Versions 1.1 and 1.2 provided the device discovery system that most Bluetooth device users are familiar with. This allowed gadgets to be paired by entering a default or defined password. Version 2.0, released in 2004, increased the data transfer speed from 721 kb/s to 2.1 Mb/s by employing the Enhanced Data Rate (EDR) function. Three years after 2.0, version 2.1 was released that featured simple methods for pairing devices. It is also the version that allows other ways in pairing devices, most notable of which was Near Field Communication (NFC).

The third version of Bluetooth added the ability to use Wi-Fi as another means for transferring data. Bluetooth establishes the connection then routes the data over Wi-Fi, making the transfer faster. It was supposed to add Ultra Wide Band (UWB) support but was discontinued for unknown reasons. Only a few phones supported Bluetooth 3.0 whose features were not really needed during that time.

Bluetooth 4.0 and Bluetooth Low Energy
In 2010 Bluetooth 4.0 was introduced. This version increased the range at which data can be sent, from 10m to 100m. But maybe the most significant change that BT 4.0 brought was Bluetooth Low Energy – the technology that brought a Nokia feature to Apple’s iPhone and Mac products.

Actually, Bluetooth Low Energy is not the first low-power radio system to come out. Before it were Z-Wave and Zigbee whose applications are completely similar to what BT 4.0 offers, such as home automation and appliance control.

Bluetooth Low Energy was originally named Wibree by Nokia when it was introduced in 2001. The proponents of the technology made it clear that it can be used to send data intermittently for a long time, consuming power in the range of 0.01 to 0.5W. This and the quick connection set-up times allow BT LE devices to run on a small battery lasting for months.

Bluetooth Applications
One of the first devices to use Bluetooth 4.0 was a wireless heart-rate monitor. The technology allows a device to use a computer or a phone to connect to its associated web service easily. For instance, the device could send your heart-rate to a website for further studies. Another application includes a smart electricity meter that requests your computer to establish a connection to the power provider’s website.

Bluetooth 4.0’s low power consumption allows it to be installed inside watches. A Bluetooth 4.0-powered watch is useful in many situations. For example, your watch can act as a key to open your phone. This will prevent anyone from opening your phone because the phone will know that it is not you.

Bluetooth SIG, the organization that oversees the Bluetooth standard, expects most of the phones that will ship in 2012 to include this technology. The lower power consumption and decreasing cost of silicon will make BT 4.0 come for free, just like how the old Bluetooth functionality was built into Wi-Fi chips. The SIG also sees BT 4.0 to be used in other areas, including remote controls for home entertainment, temperature monitoring and control, proximity sensing and much more.  

The Future of Bluetooth?- Final Thoughts
Although BT 4.0 holds a lot of promise, its rise could be thwarted by similar technologies. Set-top boxer makers are already including both Z-Wave and Zigbee which make their kit a hub for home automation and control systems. Some energy companies are using smart metering with Zigbee modules inside, and mobile phones are using ANT+ for their health and fitness sensors.

But if plenty of new phones will include Bluetooth 4.0, this would give critical mass for other devices to follow suit. Whether you will be using it to monitor your blood glucose soon will depend on the race between Bluetooth SIG and its competitors in publishing profiles for device makers.

LX is an award-winning electronics design company based in Sydney, Australia. LX services include full turnkey design, electronics, hardware, software and firmware design. LX specialises in embedded systems and wireless technologies

Published by LX Pty Ltd for itself and the LX Group of companies, including LX Design House, LX Solutions and LX Consulting, LX Innovations.

Muhammad AwaisWhat is Bluetooth 4.0?